Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Conserv Biol ; 31(1): 24-29, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27624925

RESUMEN

Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.


Asunto(s)
Abejas , Ciudades , Conservación de los Recursos Naturales , Urbanización , Animales , Biodiversidad , Ecosistema , Insectos , Mamíferos
2.
Nat Commun ; 14(1): 4751, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550318

RESUMEN

Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.


Asunto(s)
Quirópteros , Urbanización , Animales , Abejas , Síndrome , Ecosistema , Biodiversidad , Aves
3.
Sci Total Environ ; 646: 111-120, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053661

RESUMEN

Urban environments are being subject to increasing temperatures due to the combined effects of global climate change and urban heat. These increased temperatures, coupled with human planting preferences and green space management practices, influence how urban plants grow and survive. Urban community gardens are an increasingly popular land use, and a green space type that is influenced by unique climate-human behavior interactions. Despite ongoing rapid temperature changes in cities, it is unknown how gardeners are adapting to these changes, and to what extent changes influence planting decisions and patterns of urban plant diversity. In this study, we monitored the variation in daily air temperatures and measured plant species richness at the garden and garden plot scale in 11 community gardens in Melbourne, Australia. We surveyed >180 gardeners to better understand the relationships between temperature variation, garden plant species diversity, and gardener management practices. We found that garden scale temperature variability is driven by regional context, and temperatures are more stable in landscapes with higher impervious surface cover. Gardeners agreed that climatic/temperature changes are influencing their watering behavior, but not their plant selection. Instead plant selection is being driven by desired food production. Yet, when comparing two bioregions, temperature did have a measurable relationship with garden plant composition in the region with more temperature variation. Temperature variability negatively related to plant species richness within garden plots, providing evidence that plant survival is related to climate at this scale in such regions. Although gardeners may be able to water more in response to regional climate changes, gardeners are unlikely to be able to completely control the effects of temperature on plant survival in more variable conditions. This suggests the inner city with more stable temperatures (albeit potentially hotter for longer due to heat island) may accommodate more species diverse gardens.


Asunto(s)
Agricultura/métodos , Jardines , Temperatura , Abastecimiento de Agua/estadística & datos numéricos , Australia , Ciudades , Humanos , Agua
4.
Sci Rep ; 7: 40970, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102333

RESUMEN

Insects are key components of urban ecological networks and are greatly impacted by anthropogenic activities. Yet, few studies have examined how insect functional groups respond to changes to urban vegetation associated with different management actions. We investigated the response of herbivorous and predatory heteropteran bugs to differences in vegetation structure and diversity in golf courses, gardens and parks. We assessed how the species richness of these groups varied amongst green space types, and the effect of vegetation volume and plant diversity on trophic- and species-specific occupancy. We found that golf courses sustain higher species richness of herbivores and predators than parks and gardens. At the trophic- and species-specific levels, herbivores and predators show strong positive responses to vegetation volume. The effect of plant diversity, however, is distinctly species-specific, with species showing both positive and negative responses. Our findings further suggest that high occupancy of bugs is obtained in green spaces with specific combinations of vegetation structure and diversity. The challenge for managers is to boost green space conservation value through actions promoting synergistic combinations of vegetation structure and diversity. Tackling this conservation challenge could provide enormous benefits for other elements of urban ecological networks and people that live in cities.


Asunto(s)
Biodiversidad , Ciudades , Ecosistema , Insectos/clasificación , Insectos/crecimiento & desarrollo , Animales , Jardines , Parques Recreativos
5.
PLoS One ; 7(6): e38800, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685608

RESUMEN

Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.


Asunto(s)
Biomasa , Quirópteros/fisiología , Ecosistema , Insectos/fisiología , Animales , Ciudades , Conservación de los Recursos Naturales , Conducta Alimentaria/fisiología , Geografía , Humanos , Nueva Gales del Sur , Conducta Predatoria/fisiología , Análisis de Regresión , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA