Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(10): 105222, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673337

RESUMEN

Many microorganisms use both biological and nonbiological molecules as sources of carbon and energy. This resourcefulness means that some microorganisms have mechanisms to assimilate pollutants found in the environment. One such organism is Comamonas testosteroni, which metabolizes 4-methylbenzenesulfonate and 4-methylbenzoate using the TsaMBCD pathway. TsaM is a Rieske oxygenase, which in concert with the reductase TsaB consumes a molar equivalent of NADH. Following this step, the annotated short-chain dehydrogenase/reductase and aldehyde dehydrogenase enzymes TsaC and TsaD each regenerate a molar equivalent of NADH. This co-occurrence ameliorates the need for stoichiometric addition of reducing equivalents and thus represents an attractive strategy for integration of Rieske oxygenase chemistry into biocatalytic applications. Therefore, in this work, to overcome the lack of information regarding NADH recycling enzymes that function in partnership with Rieske non-heme iron oxygenases (Rieske oxygenases), we solved the X-ray crystal structure of TsaC to a resolution of 2.18 Å. Using this structure, a series of substrate analog and protein variant combination reactions, and differential scanning fluorimetry experiments, we identified active site features involved in binding NAD+ and controlling substrate specificity. Further in vitro enzyme cascade experiments demonstrated the efficient TsaC- and TsaD-mediated regeneration of NADH to support Rieske oxygenase chemistry. Finally, through in-depth bioinformatic analyses, we illustrate the widespread co-occurrence of Rieske oxygenases with TsaC-like enzymes. This work thus demonstrates the utility of these NADH recycling enzymes and identifies a library of short-chain dehydrogenase/reductase enzyme prospects that can be used in Rieske oxygenase pathways for in situ regeneration of NADH.


Asunto(s)
Proteínas Bacterianas , Comamonas testosteroni , Oxigenasas , Aldehído Deshidrogenasa/metabolismo , NAD/metabolismo , Oxigenasas/metabolismo , Especificidad por Sustrato , Comamonas testosteroni/enzimología , Comamonas testosteroni/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Proteínas de Hierro no Heme/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Estabilidad Proteica , Biología Computacional
2.
Bioprocess Biosyst Eng ; 47(12): 1973-1984, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39150530

RESUMEN

ε-Poly-L-lysine (ε-PL) is a natural and wide-spectrum antimicrobial additive. In this study, the production of ε-PL by Streptomyces albulus FQF-24 using cassava starch (CS) as carbon source and the effects of different feeding methods were investigated in a fermenter. The initial shake flask experiments demonstrated the efficient production of ε-PL with CS, achieving the ε-PL production of 1.18 g/L. Subsequent investigations in the fermenter identified that the ideal pH was 3.8 during the ε-PL synthesis phase. Under this condition, the production of ε-PL reached 1.35 g/L. When the pH was maintained at 3.8, the investigation of improvement of feeding composition was carried out in a 5 L fermenter. The intermittent feeding containing CS, inorganic and organic nitrogen sources resulted in the maximum ε-PL production and dry cell weight (DCW) reaching 17.17 g/L and 42.73 g/L. Additionally, continuous feeding with the composition of CS, organic and inorganic nitrogen sources, and inorganic salts further increased ε-PL production and DCW to 27.56 g/L and 38.5 g/L. Summarily, the above results indicate that the fermentation using low-cost CS and continuous feeding strategy with whole medium composition can provide a beneficial reference for the efficient production of ε-PL.


Asunto(s)
Carbono , Manihot , Polilisina , Almidón , Streptomyces , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Manihot/metabolismo , Polilisina/biosíntesis , Almidón/metabolismo , Carbono/metabolismo , Reactores Biológicos , Fermentación
3.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(5): 839-844, 2024 Oct 18.
Artículo en Zh | MEDLINE | ID: mdl-39397463

RESUMEN

OBJECTIVE: To study the distribution characteristics of natural killer (NK) cells and their subsets in normal peripheral blood in China, and to explore their normal value and significance. METHODS: In this study, peripheral blood was collected from 200 healthy adults. Their age range was 18-87 years. All the subjects were divided into 6 age groups: 18-30, 31-40, 41-50, 51-60, 61-70, and 71-87 years. With CD16, CD56, CD4, CD19, as surface markers, fluid cytology detection techniques were used to detect NK cells and the relative and absolute counts. SPSS 27.0 was used for systematic analysis of the data, and the measurement data were expressed as mean±standard deviations. A t test, variance analysis or rank sum test were performed to compare the differences between the age groups and the sex groups. The significance level was set at α=0.05, and P < 0.05 was considered statistically significant. RESULTS: The range of NK B cells in the 200 healthy adult subjects was (0.46±0.24)×106/L, that of CD3-CD56+NK cells was (13.14±7.56)×106/L, that of CD56dimCD16+NK cells was (5.23±3.12)×106/L, that of CD56brightNK cells was (85.61±7.40)×106/L, and that of NK T cells was (4.16±3.34)×106/L. There were no statistically significant differences in CD3-CD56+NK cells and NK T cells with respect to age (P= 0.417, P=0.217). However, there was a decreasing trend in the number of NK B cells and CD56dimCD16+NK cells with increasing age (r=0.234, P < 0.001; r=0.099, P < 0.001), particularly after the age of 50. Conversely, CD56brightNK cells showed an increasing trend with age (r=0.143, P < 0.001). CONCLUSION: The detection of NK cells and their subsets has significant reference value for the diagnosis, treatment, and prognosis of autoimmune diseases, infectious diseases, and tumors. This study provides a preliminary reference range for clinical detection of NK cell subsets, but further research with a larger sample size and multi-center trials are needed to confirm these findings.


Asunto(s)
Antígeno CD56 , Citometría de Flujo , Células Asesinas Naturales , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Adulto , Persona de Mediana Edad , Adulto Joven , Masculino , Anciano , Femenino , Adolescente , Citometría de Flujo/métodos , Anciano de 80 o más Años , Valores de Referencia , China , Recuento de Linfocitos , Receptores de IgG/sangre , Pueblos del Este de Asia
4.
Biochemistry ; 62(11): 1807-1822, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188334

RESUMEN

Rieske nonheme iron oxygenases use two metallocenters, a Rieske-type [2Fe-2S] cluster and a mononuclear iron center, to catalyze oxidation reactions on a broad range of substrates. These enzymes are widely used by microorganisms to degrade environmental pollutants and to build complexity in a myriad of biosynthetic pathways that are industrially interesting. However, despite the value of this chemistry, there is a dearth of understanding regarding the structure-function relationships in this enzyme class, which limits our ability to rationally redesign, optimize, and ultimately exploit the chemistry of these enzymes. Therefore, in this work, by leveraging a combination of available structural information and state-of-the-art protein modeling tools, we show that three "hotspot" regions can be targeted to alter the site selectivity, substrate preference, and substrate scope of the Rieske oxygenase p-toluenesulfonate methyl monooxygenase (TsaM). Through mutation of six to 10 residues distributed between three protein regions, TsaM was engineered to behave as either vanillate monooxygenase (VanA) or dicamba monooxygenase (DdmC). This engineering feat means that TsaM was rationally engineered to catalyze an oxidation reaction at the meta and ortho positions of an aromatic substrate, rather than its favored native para position, and that TsaM was redesigned to perform chemistry on dicamba, a substrate that is not natively accepted by the enzyme. This work thus contributes to unlocking our understanding of structure-function relationships in the Rieske oxygenase enzyme class and expands foundational principles for future engineering of these metalloenzymes.


Asunto(s)
Oxigenasas de Función Mixta , Oxigenasas , Oxigenasas/química , Oxigenasas de Función Mixta/metabolismo , Dicamba/metabolismo , Oxidación-Reducción , Hierro
5.
Chem Biodivers ; 19(7): e202200218, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35689671

RESUMEN

Three new alkamides, achilleamide B-D (1-3) along with five known alkamides (4-8) were isolated from the aerial parts of Achillea alpina L. Structures were elucidated by spectroscopic analysis. Modified Mosher's method and electronic circular dichroism (ECD) calculations were introduced for the absolute configuration of 3. The neuroprotective effects of all the compounds were evaluated by 6-hydroxydopamine (6-OHDA)-induced cell death in human neuroblastoma SH-SY5Y cells, with concentration for 50 % of maximal effect (EC50 ) values of 3.16-24.75 µM, and the structure-activity relationship was conducted.


Asunto(s)
Achillea , Neuroblastoma , Fármacos Neuroprotectores , Achillea/química , Humanos , Estructura Molecular , Fármacos Neuroprotectores/química , Componentes Aéreos de las Plantas/química
6.
Cancer Cell Int ; 21(1): 640, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856991

RESUMEN

BACKGROUND: Osteosarcoma (OS) metastasis is the most common cause of cancer-related mortality, however, no sufficient clinical biomarkers have been identified. In this study, we identified five genes to help predict metastasis at diagnosis. METHODS: We performed weighted gene co-expression network analysis (WGCNA) to identify the most relevant gene modules associated with OS metastasis. An important machine learning algorithm, the support vector machine (SVM), was employed to predict key genes for classifying the OS metastasis phenotype. Finally, we investigated the clinical significance of key genes and their enriched pathways. RESULTS: Eighteen modules were identified in WGCNA, among which the pink, red, brown, blue, and turquoise modules demonstrated good preservation. In the five modules, the brown and red modules were highly correlated with OS metastasis. Genes in the two modules closely interacted in protein-protein interaction networks and were therefore chosen for further analysis. Genes in the two modules were primarily enriched in the biological processes associated with tumorigenesis and development. Furthermore, 65 differentially expressed genes were identified as common hub genes in both WGCNA and protein-protein interaction networks. SVM classifiers with the maximum area under the curve were based on 30 and 15 genes in the brown and red modules, respectively. The clinical significance of the 45 hub genes was analyzed. Of the 45 genes, 17 were found to be significantly correlated with survival time. Finally, 5/17 genes, including ADAP2 (P = 0.0094), LCP2 (P = 0.013), ARHGAP25 (P = 0.0049), CD53 (P = 0.016), and TLR7 (P = 0.04) were significantly correlated with the metastatic phenotype. In vitro verification, western blotting, wound healing analyses, transwell invasion assays, proliferation assays, and colony formation assays indicated that ARHGAP25 promoted OS cell migration, invasion, proliferation, and epithelial-mesenchymal transition. CONCLUSION: We identified five genes, namely ADAP2, LCP2, ARHGAP25, CD53, and TLR7, as candidate biomarkers for the prediction of OS metastasis; ARHGAP25 inhibits MG63 OS cell growth, migration, and invasion in vitro, indicating that ARHGAP25 can serve as a promising specific and prognostic biomarker for OS metastasis.

7.
IUBMB Life ; 72(8): 1659-1679, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353215

RESUMEN

Cellular homeostasis requires tight coordination between nucleus and mitochondria, organelles that each possesses their own genomes. Disrupted mitonuclear communication has been found to be implicated in many aging processes. However, little is known about mitonuclear signaling regulator in sarcopenia which is a major contributor to the risk of poor health-related quality of life, disability, and premature death in older people. High-temperature requirement protein A2 (HtrA2/Omi) is a mitochondrial protease and plays an important role in mitochondrial proteostasis. HtrA2mnd2(-/-) mice harboring protease-deficient HtrA2/Omi Ser276Cys missense mutants exhibit premature aging phenotype. Additionally, HtrA2/Omi has been established as a signaling regulator in nervous system and tumors. We therefore asked whether HtrA2/Omi participates in mitonuclear signaling regulation in muscle degeneration. Using motor functional, histological, and molecular biological methods, we characterized the phenotype of HtrA2mnd2(-/-) muscle. Furthermore, we isolated the gastrocnemius muscle of HtrA2mnd2(-/-) mice and determined expression of genes in mitochondrial unfolded protein response (UPRmt ), mitohormesis, electron transport chain (ETC), and mitochondrial biogenesis. Here, we showed that HtrA2/Omi protease deficiency induced denervation-independent skeletal muscle degeneration with sarcopenia phenotypes. Despite mitochondrial hypofunction, upregulation of UPRmt and mitohormesis-related genes and elevated total reactive oxygen species (ROS) production were not observed in HtrA2mnd2(-/-) mice, contrary to previous assumptions that loss of protease activity of HtrA2/Omi would lead to mitochondrial dysfunction as a result of proteostasis disturbance and ROS burst. Instead, we showed that HtrA2/Omi protease deficiency results in different changes between the expression of nuclear DNA- and mitochondrial DNA-encoded ETC subunits, which is in consistent with their transcription factors, nuclear respiratory factors 1 and 2, and coactivator peroxisome proliferator-activated receptor γ coactivator 1α. These results reveal that loss of HtrA2/Omi protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia. The novel mechanistic insights may be of importance in developing new therapeutic strategies for sarcopenia.


Asunto(s)
Serina Peptidasa A2 que Requiere Temperaturas Altas/genética , Biogénesis de Organelos , Sarcopenia/genética , Anciano , Anciano de 80 o más Años , Animales , Núcleo Celular/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Homeostasis/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Sarcopenia/metabolismo , Sarcopenia/patología , Temperatura , Respuesta de Proteína Desplegada/genética
8.
J Am Chem Soc ; 141(51): 20335-20343, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31774666

RESUMEN

Graphene-based biosensors have attracted considerable attention due to their advantages of label-free detection and high sensitivity. Many such biosensors utilize noncovalent van der Waals force to attach proteins onto graphene surface while preserving graphene's high conductivity. Maintaining the protein structure without denaturation/substantial conformational change and controlling proper protein orientation on the graphene surface are critical for biosensing applications of these biosensors fabricated with proteins on graphene. Based on the knowledge we obtained from our previous experimental study and computer modeling of amino acid residual level interactions between graphene and peptides, here we systemically redesigned an important protein for better conformational stability and desirable orientation on graphene. In this paper, immunoglobulin G (IgG) antibody-binding domain of protein G (protein GB1) was studied to demonstrate how we can preserve the protein native structure and control the protein orientation on graphene surface by redesigning protein mutants. Various experimental tools including sum frequency generation vibrational spectroscopy, attenuated total refection-Fourier transform infrared spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy were used to study the protein GB1 structure on graphene, supplemented by molecular dynamics simulations. By carefully designing the protein GB1 mutant, we can avoid strong unfavorable interactions between protein and graphene to preserve protein conformation and to enable the protein to adopt a preferred orientation. The methodology developed in this study is general and can be applied to study different proteins on graphene and beyond. With the knowledge obtained from this research, one could apply this method to optimize protein function on surfaces (e.g., to enhance biosensor sensitivity).


Asunto(s)
Grafito/química , Receptores de GABA-B/química , Técnicas Biosensibles , Simulación de Dinámica Molecular , Conformación Proteica
9.
J Am Chem Soc ; 141(25): 9980-9988, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31199639

RESUMEN

Single layered two-dimensional (2D) materials such as transition metal dichalcogenides (TMDs) show great potential in many microelectronic or nanoelectronic applications. For example, because of extremely high sensitivity, TMD-based biosensors have become promising candidates for next-generation label-free detection. However, very few studies have been conducted on understanding the fundamental interactions between TMDs and other molecules including biological molecules, making the rational design of TMD-based sensors (including biosensors) difficult. This study focuses on the investigations of the fundamental interactions between proteins and two widely researched single-layered TMDs, MoS2, and WS2 using a combined study with linear vibrational spectroscopy attenuated total reflectance FTIR and nonlinear vibrational spectroscopy sum frequency generation vibrational spectroscopy, supplemented by molecular dynamics simulations. It was concluded that a large surface hydrophobic region in a relatively flat location on the protein surface is required for the protein to adsorb onto a monolayered MoS2 or WS2 surface with preferred orientation. No disulfide bond formation between cysteine groups on the protein and MoS2 or WS2 was found. The conclusions are general and can be used as guiding principles to engineer proteins to attach to TMDs. The approach adopted here is also applicable to study interactions between other 2D materials and biomolecules.


Asunto(s)
Proteínas Bacterianas/química , Disulfuros/química , Glucosidasas/química , Hidrolasas/química , Molibdeno/química , Tungsteno/química , beta-Glucosidasa/química , Adsorción , Clostridium cellulovorans/enzimología , Interacciones Hidrofóbicas e Hidrofílicas , Lactococcus lactis/enzimología , Simulación de Dinámica Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Sphingomonas/enzimología , Propiedades de Superficie , Vibración
10.
Sensors (Basel) ; 19(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671894

RESUMEN

In this paper, an onboard vision-based system for the autonomous landing of a low-cost quadrotor is presented. A novel landing pad with different optical markers sizes is carefully designed to be robustly recognized at different distances. To provide reliable pose information in a GPS (Global Positioning System)-denied environment, a vision algorithm for real-time landing pad recognition and pose estimation is implemented. The dynamic model of the quadrotor is established and a system scheme for autonomous landing control is presented. A series of autonomous flights have been successfully performed, and a video of the experiment is available online. The efficiency and accuracy of the presented vision-based system is demonstrated by using its position and attitude estimates as control inputs for the autonomous landing of a self-customized quadrotor.

11.
Langmuir ; 34(43): 12889-12896, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30277782

RESUMEN

Surfaces with chemically immobilized antimicrobial peptides have been shown to have great potential in various applications such as biosensors and antimicrobial coatings. This research investigated the chemical immobilization of a cecropin-melittin hybrid antimicrobial peptide on two different surfaces, a polymer surface prepared by chemical vapor deposition (CVD) polymerization and a self-assembled monolayer surface. We probed the structure of immobilized peptides using spectroscopic methods and correlated such structural information to the measured antimicrobial activity. We found that the hybrid peptide adopts an α-helical structure after immobilization onto both surfaces. As we have shown previously for another α-helical peptide, MSI-78, immobilized on a SAM, we found that the α-helical hybrid peptide lies down when it contacts bacteria. This study shows that the antimicrobial activity of the surface-immobilized peptides on the two substrates can be well explained by the spectroscopically measured peptide structural data. In addition, it was found that the polymer-based antimicrobial peptide coating is more stable. This is likely due to the fact that the SAM prepared using silane may be degraded after several days whereas the polymer prepared by CVD polymerization is more stable than the SAM, leading to a more stable antimicrobial coating.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Proteínas Inmovilizadas/química , Polímeros/química , Secuencia de Aminoácidos , Relación Estructura-Actividad , Propiedades de Superficie
12.
Mol Cell Biochem ; 430(1-2): 201-209, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28224332

RESUMEN

Necrotizing enterocolitis (NEC) is a severe gastrointestinal inflammatory disease in neonates, particularly in preterm infants. The interleukin (IL) 23/IL17 axis has been shown to play an important role in the gastrointestinal inflammation. However, the association of gene polymorphisms in the IL23/IL17 axis and the development of NEC remains unknown. In this study, we aimed to explore a possible genetic role of IL23R and IL17 in the development of NEC. We identified single nucleotide polymorphisms (SNPs) in IL23R (rs10889677), IL17A (rs2275913), and IL17F (rs763780) by polymerase chain reaction and Sanger sequencing. A total of 102 NEC patients (stage II, n = 75; and stage III, n = 27) and 120 control subjects were recruited for the study. All of the participants were premature (gestational age < 37 weeks). Our results revealed that the combination of the IL17F rs763780 (TC + CC) genotype and the C allele both significantly increased the risk of NEC [odds ratio (OR) 1.89, 95% confidence interval (CI) 1.04-3.43, P = 0.035; OR 1.82, 95% CI 1.06-3.13, P = 0.028, respectively]. Furthermore, the rs763780 (TC + CC) genotype was associated with increased severity of NEC and the incidence of NEC-related perforation [OR 2.80, 95% CI 1.10-7.12, P = 0.031; OR 3.86, 95% CI 1.10-13.53, P = 0.035, respectively]. However, IL23R rs10889677 and IL17A rs2275913 were not associated with the susceptibility to NEC. In conclusion, our data suggest that a variant of IL17F (rs763780) may contribute to the development of NEC.


Asunto(s)
Enterocolitis Necrotizante/genética , Enfermedades del Recién Nacido/genética , Interleucina-17/genética , Polimorfismo de Nucleótido Simple , Receptores de Interleucina/genética , Femenino , Humanos , Recién Nacido , Masculino
13.
Animals (Basel) ; 14(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891617

RESUMEN

Despite the crucial role of the gut microbiota in different physiological processes occurring in the animal body, reports regarding the gut microbiota of animals residing in different environmental conditions like high altitude and different climate settings are limited. The Qinghai-Tibetan Plateau is renowned for its extreme climatic conditions that provide an ideal environment for exploring the effects of high altitude and temperature on the microbiota of animals. Yaks have unique oxygen delivery systems and genes related to hypoxic response. Damxung, Nyêmo, and Linzhou counties in Tibet have variable altitudes and temperatures that offer distinct settings for studying yak adaptation to elevated terrains. The results of our study suggest that amplicon sequencing of V3-V4 and internal transcribed spacer 2 (ITS2) regions yielded 13,683 bacterial and 1912 fungal amplicon sequence variants (ASVs). Alpha and beta diversity indicated distinct microbial structures. Dominant bacterial phyla were Firmicutes, Bacteroidota, and Actinobacteriota. Genera UCG-005, Christensenellaceae_R-7_group, and Rikenellaceae_RC9_gut_group were dominant in confined yaks living in Damxung county (DXS) and yaks living in Linzhou county (LZS), whereas UCG-005 prevailed in confined yaks living in Nyêmo county (NMS). The linear discriminant analysis effect size (LEfSe) analysis highlighted genus-level differences. Meta-stat analysis revealed significant shifts in bacterial and fungal community composition in yaks at different high altitudes and temperatures. Bacterial taxonomic analysis revealed that two phyla and 32 genera differed significantly (p < 0.05). Fungal taxonomic analysis revealed that three phyla and four genera differed significantly (p < 0.05). Functional predictions indicated altered metabolic functions, especially in the digestive system of yaks living in NMS. This study reveals significant shifts in yak gut microbiota in response to varying environmental factors, such as altitude and temperature, shedding light on previously unexplored aspects of yak physiology in extreme environments.

14.
Sci Total Environ ; 954: 176434, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307363

RESUMEN

With the regulation and phase-out of conventional per- and polyfluoroalkyl substances (PFAS), there is a growing trend towards seeking alternatives that are less toxic and less persistent. Hexafluoropropylene oxide trimer acid (HFPO-TA) is one of the alternatives to perfluorooctanoic acid (PFOA), the latter being widely present in the environment globally. However, there is limited information regarding the biological toxicity of HFPO-TA to aquatic organisms. In this study, the freshwater benthic amphipod, Hyalella azteca, was used to assess the acute and chronic toxicity of HFPO-TA in both water and sediment. HFPO-TA was found to be more toxic to H. azteca than PFOA, as indicated by greater production of reactive oxygen species (p < 0.05) and increasing catalase activity (p < 0.05). In addition, exposure to HFPO-TA affected the swimming behavior and the acetylcholinesterase (AChE) activity of the amphipod. Molecular docking models revealed that HFPO-TA can bind to AChE with a stronger binding affinity than PFOA. Furthermore, an integrated biomarker response index indicated that environmentally relevant concentration (1-100 µg/L) of HFPO-TA may cause toxicity to H. azteca, encompassing oxidative stress and neurotoxicity. This study provides new insights into the toxicity mechanisms of HFPO-TA and is valuable for assessing the ecological safety of this compound.

15.
Am J Cancer Res ; 14(3): 1278-1291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590404

RESUMEN

This study aims to evaluate the effects of Omaha System framework interventions on quality of life, emotional well-being, and sleep quality in 507 mid to late-stage lung cancer patients. Retrospectively, we compared data of 294 patients receiving conventional care (conventional group) with 213 patients undergoing Omaha System interventions (intervention group) from January 2019 to January 2023. Key indicators included quality of life (FACT-L), anxiety (SAS), depression (SDS), sleep quality (PSQI), hope (HHS), and dignity (PDI). Post-intervention, the intervention group showed a significant increase in FACT-L scores (P<0.001), indicating enhanced quality of life. There was a notable reduction in PSQI scores (P<0.001), suggesting improved sleep quality. Additionally, their anxiety and depression levels significantly decreased, as evidenced by lower SAS (P<0.001) and SDS scores (P<0.001). Logistic regression revealed that care nursing intervention scheme (P=0.007), age (P=0.008), marital status (P=0.002), per capita monthly household income (P=0.004), SAS after intervention (P=0.002), and PSQI after intervention (P=0.002) had a positive influence on quality of life. In conclusion, the Omaha System interventions markedly improved the quality of life, emotional state, and sleep in lung cancer patients.

16.
Fitoterapia ; 178: 106186, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142527

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by excessive intracellular fat deposition in the hepatocytes, and the development is exacerbated by gut microbiota and bile acids metabolism disorders. Ilex hainanensis Merr. is a traditional medicine of the Zhuang nationality, historically esteemed for its efficacy in lowering blood pressure and lipid levels. This study aimed to investigate the pharmacodynamic effects in NAFLD mice and impacts on gut microbiota and bile acids (BAs) metabolism of I. hainanensis extract (IHA). 16 compounds were identified from IHA by HPLC-DAD-MS analysis. IHA significantly reduced body weight indexs, alanine transaminase (ALT) and aspartate transaminase (AST) activities, improved dyslipidemia and insulin resistance (IR), and effectively ameliorated hepatic steatosis in HFD-induced NAFLD mice. IHA also altered gut microbiota composition, particularly enhancing the abundance of bacteria involved in BAs metabolism, as well as augmented BAs synthesis in the liver and increased fecal excretion. In conclusion, our findings suggest that IHA holds promise in improving NAFLD conditions and modulating gut microbiota and BAs metabolism. These insights contribute to a deeper understanding of the mechanisms underlying IHA-mediated alleviation of lipid accumulation in NAFLD.


Asunto(s)
Ácidos y Sales Biliares , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ilex , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ratones , Ácidos y Sales Biliares/metabolismo , Ilex/química , Masculino , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , China , Resistencia a la Insulina , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Dislipidemias/tratamiento farmacológico
17.
Int J Biol Macromol ; 281(Pt 4): 136392, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39423983

RESUMEN

The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.

18.
Biomolecules ; 14(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39199301

RESUMEN

Foxtail millet prolamin, one of the major protein constituents of foxtail millet, has garnered attention due to its unique amino acid composition and function. Foxtail millet prolamin exhibits specific physicochemical and functional characteristics, such as solubility, surface hydrophobicity, emulsifying, and foaming properties. These characteristics have been exploited in the preparation and development of products, including plant-based alternative products, nutritional supplements, and gluten-free foods. Additionally, because of the favorable biocompatibility and biodegradability, foxtail millet prolamin is frequently used as a carrier for encapsulation and targeted delivery of bioactive substances. Moreover, studies have shown that foxtail millet prolamin is highly nutritious and displays various biological activities like antioxidant effects, anti-inflammatory properties, and anti-diabetic potential, making it a valuable ingredient in medicinal products and contributing to its potential role in therapeutic diets. This review summarizes the current knowledge of the amino acid composition and structural characteristics of foxtail millet prolamin, as well as the functional properties, biological activities, and applications in functional food formulation and drug delivery strategy. Challenges and future perspectives for the utilization of foxtail millet prolamin are also pointed out. This review aims to provide novel ideas and broad prospects for the effective use of foxtail millet prolamin.


Asunto(s)
Prolaminas , Setaria (Planta) , Prolaminas/química , Setaria (Planta)/química , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad
19.
J Hazard Mater ; 480: 136049, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368360

RESUMEN

Hydrodynamic conditions have a significant effect on the fate of microplastics (MPs). Moreover, research on the relation between hydrodynamic conditions and MPs in freshwater environments is critical and unquantified. In this regard, herein, a methodological framework integrating system monitoring with numerical simulation has been developed and successfully implemented for Dongting Lake, a large freshwater lake fed by multiple rivers. According to time-series monitoring and hydrological data, 199.29/128.50 trillion MP items entered or exited Dongting Lake in 2021. In addition, a coupled numerical model identified four key areas of MP accumulation, which overlap with nature reserves and agricultural zones, posing considerable risks to the ecological gene pool and food security. The quantitative results obtained using the developed framework enable calculation of MP inflow and outflow fluxes and facilitate analysis of MP transportation. Overall, this study provides a scientific basis for preventing and controlling MP pollution in Dongting Lake and offers valuable insights for future research on related issues in freshwater ecosystems.

20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38660875

RESUMEN

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Asunto(s)
Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Animales , Ratones , Femenino , Células Madre Mesenquimatosas/citología , Células de la Médula Ósea/citología , Microambiente Celular , Médula Ósea , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA