Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Invertebr Pathol ; 166: 107207, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31152769

RESUMEN

Antimicrobial peptides (AMPs) play important roles in the insect innate immune response. To investigate the role of a lebocin-like protein in the oak silkworm, Antheraea pernyi, in response to immune challenge, an Ap-lebocin-like gene with an open reading frame of 489 bp was identified. This gene encodes a protein of 162 amino acid residues and belongs to a family of proline-rich antimicrobial peptides. Real-time PCR analysis found that Ap-lebocin-like was expressed in all tested tissues, with the highest expression in the midgut, followed by the epidermis, and the lowest expression in the silk gland. Different transcription patterns of Ap-lebocin-like were observed in the fat body and midgut after injection of Escherichia coli, A. pernyi nucleopolyhedrovirus, Micrococcus luteus, and Beauveria bassiana. An antibacterial activity assay indicated that the Ap-lebocin-like has high antibacterial activity in vitro, with a greater activity toward gram-positive bacteria (Staphylococcus aureus) than toward gram-negative bacteria (E. coli). These results suggested that Ap-lebocin-like participates in the immune response of A. pernyi.


Asunto(s)
Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Mariposas Nocturnas/genética , Mariposas Nocturnas/inmunología , Animales
2.
Arch Insect Biochem Physiol ; 99(4): e21516, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30387888

RESUMEN

Small heat shock proteins (sHSPs) are a class of highly conserved proteins that are ubiquitously found in all types of organisms, from prokaryotes to eukaryotes. In the current study, we identified and characterized the full-length cDNA encoding sHSP 19.1 from the oak silkworm, Antheraea pernyi. Ap-sHSP is 510 bp in length, and encodes a protein of 169 amino acid residues. The protein contains conserved domains found in insect sHSPs, and it belongs to the α-crystallin-HSPs_p23-like superfamily. Recombinant Ap-sHSP was expressed in Escherichia coli cells, and a rabbit anti-Ap-sHSP 19.1 antibody was generated to confirm the biological functions of Ap-sHSP 19.1 in A. pernyi. Real-time polymerase chain reaction and western blot analysis revealed that Ap-sHSP 19.1 expression was highest in the fat body, followed by the midgut, and the lowest expression was found in the Malpighian tubule. Ap-sHSP 19.1 transcript expression was significantly induced following challenge with microbial pathogens. In addition, the expression of Ap-sHSP 19.1 was strongly induced after heat shock. These results suggest that Ap-sHSP 19.1 plays a crucial role in immune responses and thermal tolerance in A. pernyi.


Asunto(s)
Clonación Molecular , Proteínas de Choque Térmico/metabolismo , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/fisiología , Animales , ADN Complementario , Proteínas de Choque Térmico/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , ARN , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
J Invertebr Pathol ; 151: 14-20, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079530

RESUMEN

Cyclic AMP response element binding (CREB) proteins participate in the regulation of many biological processes. However, little is known about their role in immune regulation in the Oak silkworm (Antheraea pernyi). In this study, a CREB gene was identified in A. pernyi and its role in immune regulation was investigated. ApCREB shares conserved signature motifs with other CREB proteins, and includes a typical leucine zipper domain, specific DNA-binding site, nuclear localisation signal (NLS) and cAMP-dependent protein kinase phosphorylation site. Recombinant ApCREB was expressed in Escherichia coli and used to raise rabbit anti-ApCREB polyclonal antibodies. ApCREB mRNA was detected in all examined tissues, with maximum expression in the midgut and integument. Following exposure to four pathogenic microorganisms (Beauveria bassiana, Escherichia coli, Micrococcus luteus, and Antheraea pernyi nuclear polyhedrosis virus), expression of ApCREB was up-regulated by B. bassiana, E. coli and ApNPV, down-regulated by M. luteus. RNA interference of ApCREB affected mRNA expression levels of antimicrobial peptide genes attacin-1, cecropin B, defensin-1, gloverin, and lebocin-2. These findings demonstrate that ApCREB is a CREB homologue that may be involved in innate immunity in A. pernyi.


Asunto(s)
Bombyx/genética , Bombyx/inmunología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/inmunología , Animales , Inmunidad Innata/genética , Inmunidad Innata/inmunología
4.
Dev Comp Immunol ; 78: 114-123, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28958702

RESUMEN

Cathepsins are a group of protease, located in lysosome and play a vital role in physiological process. Here, we reported cathepsin L-like protease (Ap-cathL), which contained an open reading frame of 1155 bp and encoding 385 amino acid residues protein. The I29 inhibitor domain and peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) putative conserved domains were detected in Ap-cathL. Quantitative real-time PCR (qRT-PCR) analysis revealed that Ap-cathL highly expressed in the fat body and midgut. The high expression during the molting stage, pupal stage and following 20E (20-hydroxyecdysone) treatment indicated that it maybe involved in the process of molting and metamorphosis. In addition, depletion of Ap-cathL influenced the expression of apoptosis pathway related genes. The protease inhibitor and RNA interference experiments showed that Ap-cathL was involved in the fat body dissociation of A. pernyi. These results suggest that Ap-cathL may involve in the process of metamorphosis and fat body dissociation of A. pernyi.


Asunto(s)
Catepsina L/metabolismo , Cuerpo Adiposo/fisiología , Proteínas de Insectos/metabolismo , Metamorfosis Biológica/genética , Muda/genética , Mariposas Nocturnas/fisiología , Péptido Hidrolasas/metabolismo , Animales , Apoptosis/genética , Catepsina L/genética , Células Cultivadas , Clonación Molecular , Ecdisterona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Péptido Hidrolasas/genética , ARN Interferente Pequeño/genética
5.
Int J Biol Macromol ; 112: 1199-1207, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29454956

RESUMEN

Antheraea pernyi is not only an important economic insect, it is increasingly employed as a model organism due to a variety of advantages, including ease of rearing and experimental manipulation compared with other Lepidoptera. Peptidoglycan (PGN) is a major component of the bacterial cell wall, and interactions between PGN and A. pernyi cause a series of physiological changes in the insect. In the present study, we constructed cDNA libraries from a A. pernyi PGN-infected group and a control group stimulated with phosphate-buffered saline (PBS). The transcriptome was de novo assembled using the Trinity platform, and 1698 differentially expressed genes (DEGs) were identified, comprising 894 up-regulated and 804 down-regulated genes. To further investigate immune-related DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. GO analysis identified major immune-related GO terms and KEGG enrichment indicated gene responses to three pathways related to the insect immune system. Several homologous genes related to the immune response of the A. pernyi fat body post-PGN infection were identified and categorised. Taken together, the results provide insight into the complex molecular mechanisms of the responses to bacterial infection at the transcriptional level.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Mariposas Nocturnas/genética , Peptidoglicano/farmacología , Transcriptoma/genética , Animales , Secuencia de Bases , Ontología de Genes , Inmunidad/efectos de los fármacos , Inmunidad/genética , Anotación de Secuencia Molecular , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/inmunología
6.
Int J Biol Macromol ; 111: 1027-1031, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29371147

RESUMEN

Small heat shock proteins (sHSPs) are conserved among insects and play an important role in the regulation of many biological processes, including temperature stress, abiotic stress, immune responses, metamorphosis, and embryo development. Antheraea pernyi is an economically valuable silk-producing moth and source of insect food containing high-quality protein. The aim of this study was to quantify expression of the ApsHSP21 gene in response to pathogen-associated molecular patterns (PAMPs) and nucleopolyhedrovirus (NPV) challenge. The deduced ApsHSP21 protein sequence consists of 186 residues with a calculated molecular mass of 21.0 kDa and an isoelectronic point (pI) of 6.63. The protein contains a conserved α-crystallin domain (ACD), and includes two casein kinase II phosphorylation sites, a protein kinase C phosphorylation site, two tyrosine kinase phosphorylation sites, and various polypeptide binding sites. Phylogenetic analysis revealed that ApsHSP21 is closely related to homologs from other insects. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that expression of ApsHSP21 was significantly up-regulated at different timepoints following simulated pathogen challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), glucan, and NPV. The results suggest sHSP21 is involved in innate immune responses in A. pernyi.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/química , Inmunidad Activa/inmunología , Mariposas Nocturnas/inmunología , Filogenia , Animales , Sitios de Unión , Clonación Molecular , Regulación de la Expresión Génica/inmunología , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/inmunología , Inmunidad Activa/efectos de los fármacos , Inmunidad Activa/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Lipopolisacáridos/química , Mariposas Nocturnas/química , Mariposas Nocturnas/genética , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/patogenicidad , Dominios Proteicos/genética , Quercus/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA