Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(22): e2311029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38152924

RESUMEN

Vanadium-based cathode materials have attracted great attention in aqueous zinc-ion batteries (AZIBs). However, the inferior ion transport and cyclic stability due to the strong Coulomb interaction between Zn2+ and the lattice limit their further application. In this work, CO2 molecules are in situ embedded in the interlayer structure of NH4V4O10 by decomposing excess H2C2O4·2H2O in the main framework, obtaining an ion-molecule co-confining NH4V4O10 for AZIB cathode material. The introduced CO2 molecules expanded the interlayer spacing of NH4V4O10, broadened the diffusion channel of Zn2+, and stabilized the structure of NH4V4O10 as the interlayer pillars together with NH 4 + ${\mathrm{NH}}_4^ + $ , which effectively improved the Zn2+ diffusion kinetics and cycle stability of the electrode. In addition, the binding between NH 4 + ${\mathrm{NH}}_4^ + $ and the host framework is stabilized via hydrogen bonds with CO2 molecules. NVO-CO2-0.8 exhibited excellent specific capacity (451.1 mAh g-1 at 2 A g-1), cycle stability (214.0 mAh g-1 at 10 A g-1 after 1000 cycles) and rate performance. This work provides new ideas and approaches for optimizing vanadium-based materials with high-performance AZIBs.

2.
ACS Nano ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311683

RESUMEN

In this study, highly monodisperse copper sulfide (CuxSy) quantum dots (QDs) have been successfully obtained using a ligand-chemistry strategy, and then a variety of S-deficient CuxSy/nitrogen-doped carbon (NC) heterointerfaces are constructed by compositional fine-tuning (Cu9S5 → Cu1.96S → Cu). First-principles calculations show that the S-deficient domains of CuxSy QDs and N-doped domains of carbon synergistically enhance the electron transfer from CuxSy to NC. In addition, the finite element simulations demonstrate that the diverse CuxSy QDs exhibit their intrinsic size and dielectric confinement effects to precisely manipulate the electric field distortion and improve the relaxation polarization. Consequently, CuxSy@NC achieves excellent impedance matching and a strong loss mode dominated by dielectric polarization. Among them, CuxSy@NC-650 has a maximum effective absorption bandwidth of 7.7 GHz at 2.5 mm, while CuxSy@NC-700 features a minimum reflection loss of -66.7 dB at 13.7 GHz, respectively. Furthermore, the simulations of radar cross-sections have confirmed that the CuxSy@NC series is promising in the field of radar stealth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA