Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Virol J ; 18(1): 22, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461581

RESUMEN

BACKGROUND: Oxidative stress is an important pathogenic factor in influenza A virus infection. It has been found that reactive oxygen species induced by the H9N2 influenza virus is associated with viral replication. However, the mechanisms involved remain to be elucidated. METHODS: In this study, the role of autophagy was investigated in H9N2 influenza virus-induced oxidative stress and viral replication in A549 cells. Autophagy induced by H9N2 was inhibited by an autophagy inhibitor or RNA interference, the autophagy level, viral replication and the presence of oxidative stress were detected by western blot, TCID50 assay, and Real-time PCR. Then autophagy and oxidative stress were regulated, and viral replication was determined. At last, the Akt/TSC2/mTOR signaling pathways was detected by western blot. RESULTS: Autophagy was induced by the H9N2 influenza virus and the inhibition of autophagy reduced the viral titer and the expression of nucleoprotein and matrix protein. The blockage of autophagy suppressed the H9N2 virus-induced increase in the presence of oxidative stress, as evidenced by decreased reactive oxygen species production and malonaldehyde generation, and increased superoxide dismutase 1 levels. The changes in the viral titer and NP mRNA level caused by the antioxidant, N-acetyl-cysteine (NAC), and the oxidizing agent, H2O2, confirmed the involvement of oxidative stress in the control of viral replication. NAC plus transfection with Atg5 siRNA significantly reduced the viral titer and oxidative stress compared with NAC treatment alone, which confirmed that autophagy was involved in the replication of H9N2 influenza virus by regulating oxidative stress. Our data also revealed that autophagy was induced by the H9N2 influenza virus through the Akt/TSC2/mTOR pathway. The activation of Akt or the inhibition of TSC2 suppressed the H9N2 virus-induced increase in the level of LC3-II, restored the decrease in the expression of phospho-pAkt, phospho-mTOR and phospho-pS6 caused by H9N2 infection, suppressed the H9N2-induced increase in the presence of oxidative stress, and resulted in a decrease in the viral titer. CONCLUSION: Autophagy is involved in H9N2 virus replication by regulating oxidative stress via the Akt/TSC2/mTOR signaling pathway. Thus, autophagy maybe a target which may be used to improve antiviral therapeutics.


Asunto(s)
Células Epiteliales Alveolares/virología , Autofagia/genética , Regulación de la Expresión Génica , Subtipo H9N2 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Estrés Oxidativo/genética , Replicación Viral , Células A549 , Animales , Humanos , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Transducción de Señal , Porcinos
2.
Vet Microbiol ; 246: 108747, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32605760

RESUMEN

H9N2 avian influenza viruses (AIVs) can cross species barriers and expand from birds tomammals and humans. It usually leads to economic loss for breeding farms and poses a serious threat to human health.This study investigated the molecular characteristics of H9N2 AIV isolated from a racing pigeon and its pathogenesis in BALB/c mice and pigeons. Phylogenetic analysis indicated that the H9N2 virus belonged to the Ck/BJ/94-like lineage, and acquired multiple specific amino acid substitutions that might contribute to viral transmission from birds to mammals and humans. A pathogenesis study showed that both mice and pigeons infected with H9N2 virus showed clinical signs and mortality. The H9N2 viruses efficiently replicated in mice and pigeons. In our study, high levels of viral shedding were detected in pigeons, but the infection was not transmitted to co-housed pigeons. Histopathological examination revealed the presence of inflammatory responses in the infected mice and pigeons. Immunohistochemical analysis showed the presence of H9N2 virus in multiple organs of the infected mice and pigeons. Moreover, the infected mice and pigeons demonstrated significant cytokine/chemokine production. Our results showed that the H9N2 virus can infect mice and pigeons, and can not be transmitted between pigeons through direct contact.


Asunto(s)
Columbidae/virología , Genoma Viral , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Sustitución de Aminoácidos , Animales , Quimiocinas/inmunología , Citocinas/inmunología , Femenino , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Ratones , Ratones Endogámicos BALB C , Mutación , Filogenia , Organismos Libres de Patógenos Específicos , Replicación Viral , Esparcimiento de Virus
3.
Int Immunopharmacol ; 74: 105737, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31288152

RESUMEN

Influenza A virus usually leads to economic loss to breeding farms and pose a serious threat to human health. Virus infecting tissues directly and influenza virus-induced excessive production of inflammatory factors play the key role in pathogenesis of the disease, but the mechanism is not well clarified. Here, the role of autophagy was investigated in H9N2 influenza virus-triggered inflammation. The results showed that autophagy was induced by H9N2 virus in A549 cells and in mice. Inhibiting autophagy by an autophagy inhibitor (3-methyladenine, 3-MA) or knockdown of Atg5(autophagy-related gene) by Atg5 siRNA significantly suppressed H9N2 virus replication, H9N2 virus-triggered inflammatory cytokines and chemokines, including IL-1ß, TNF-α, IL-8, and CCL5 in vitro and in vivo, and suppressed H9N2 virus-triggered acute lung injury as indicated as accumulative mortality of mice, inflammatory cellular infiltrate and interstitial edema, thickening of the alveolar walls in mice lung tissues, increased inflammatory cytokines and chemokines, increased W/D ratio in mice. Moreover, autophagy mediated inflammatory responses through Akt-mTOR, NF-κB and MAPKs signaling pathways. Our data showed that autophagy was essential in H9N2 influenza virus-triggered inflammatory responses, and autophagy could be target to treat influenza virus-caused lung inflammation.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Células A549 , Animales , Proteína 5 Relacionada con la Autofagia/genética , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , ARN Interferente Pequeño/genética , Transducción de Señal
4.
Int Immunopharmacol ; 52: 24-33, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28858723

RESUMEN

Epigallocatechin-3-gallate (EGCG) was found to inhibit the Toll-like receptor 4 (TLR4) pathway involved in influenza virus pathogenesis. Here, the effect of EGCG on TLR4 in an H9N2 virus-induced acute lung injury mouse model was investigated. BALB/c mice were inoculated intranasally with A/Swine/Hebei/108/2002 (H9N2) virus or noninfectious allantoic fluid, and treated with EGCG and E5564 or normal saline orally for 5 consecutive days. PMVECs were treated with EGCG or anti-67kDa laminin receptor (LR). Lung physiopathology, inflammation, oxidative stress, viral replication, and TLR4/NF-κB/Toll-interacting protein (Tollip) pathway in lung tissue and/or PMVECs were investigated. EGCG attenuated lung histological lesions, decreased lung W/D ratio, cytokines levels, and inhibited MPO activity and prolonged mouse survival. EGCG treatment also markedly downregulated TLR4 and NF-κB protein levels but Tollip expression was upregulated compared with that in untreated H9N2-infected mice (P<0.05). In PMVECs, anti-67LR antibody treatment significantly downregulated Tollip levels; however, the TLR4 and NF-κB protein levels dramatically increased compared with that in the EGCG-treated group (P<0.05). EGCG remarkably downregulated TLR4 protein levels through 67LR/Tollip, decreased MPO activity and inflammatory cytokine levels, supporting EGCG as a potential therapeutic agent for managing acute lung injury induced by H9N2 SIV.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antivirales/uso terapéutico , Catequina/análogos & derivados , Subtipo H9N2 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Lesión Pulmonar Aguda/inmunología , Animales , Catequina/uso terapéutico , Femenino , Regulación de la Expresión Génica , Mediadores de Inflamación/metabolismo , Pulmón/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Estrés Oxidativo , Receptores de Laminina/metabolismo , Transducción de Señal , Porcinos , Receptor Toll-Like 4/metabolismo
5.
Int Immunopharmacol ; 22(1): 1-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24968347

RESUMEN

The antioxidant N-acetyl-l-cysteine (NAC) had been shown to inhibit replication of seasonal human influenza A viruses. Here, the effects of NAC on H9N2 swine influenza virus-induced acute lung injury (ALI) were investigated in mice. BALB/c mice were inoculated intranasally with 10(7) 50% tissue culture infective doses (TCID(50)) of A/swine/HeBei/012/2008/(H9N2) viruses with or without NAC treatments to induce ALI model. The result showed that pulmonary inflammation, pulmonary edema, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6, IL-1ß and CXCL-10 in BALF were attenuated by NAC. Moreover, our data showed that NAC significantly inhibited the levels of TLR4 protein and TLR4 mRNA in the lungs. Pharmacological inhibitors of TLR4 (E5564) exerted similar effects like those determined for NAC in H9N2 swine influenza virus-infected mice. These results suggest that antioxidants like NAC represent a potential additional treatment option that could be considered in the case of an influenza A virus pandemic.


Asunto(s)
Acetilcisteína/administración & dosificación , Lesión Pulmonar Aguda/inmunología , Antioxidantes/administración & dosificación , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Lípido A/administración & dosificación , Lípido A/análogos & derivados , Lípido A/farmacología , Pulmón/efectos de los fármacos , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Peroxidasa/metabolismo , Porcinos , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA