Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biotechnol Lett ; 45(10): 1381-1391, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37589824

RESUMEN

OBJECTIVE: In this study, we established an efficient and rapid transient expression system in the protoplasts of Pinellia ternata (Thunb.) Breit. (P. ternata). RESULTS: The protoplasts of P. ternata were prepared from plant leaves as the source material by digesting them with the combination of 20 g·l-1 cellulase and 15 g·l-1 macerozyme for 6 h. Based on the screening of PEG concentration, the conditions for PEG-mediated protoplast transformation were improved, and the highest transformation efficiency was found for 40% PEG 4000. Furthermore, we used the subcellular protein localization technique in P. ternata protoplasts to allow further validation of transient expression system. CONCLUSIONS: We present the method that can be applicable for studying both gene verification and expression in P. ternata protoplasts, thus allowing for engineering the improved varieties of P. ternata through molecular plant breeding techniques. This method can also be widely applicable for analyzing protein interactions, detecting promoter activity, for somatic cell fusion in plant breeding, as well as for other related studies.


Asunto(s)
Celulasa , Pinellia , Pinellia/genética , Protoplastos , Fitomejoramiento , Barajamiento de ADN
2.
Opt Lett ; 47(3): 533-536, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103674

RESUMEN

A squeezed state with higher-order sidebands is a valuable quantum resource for channel multiplexing quantum communication. However, balanced homodyne detection used in nonclassical light detection has a trade-off performance between the detection bandwidth and clearance, in which the verification of a highly squeezing factor faces a challenge. Here, we construct two optical parametric amplifiers with cavity enhancement; one is for the generation of a -10.5 dB squeezed vacuum state, and the other is for all-optical phase-sensitive parametric homodyne detection. Finally, -6.5 dB squeezing at the carrier with 17 pairs of squeezing sidebands (bandwidth of 156 GHz) is directly and simultaneously observed. In particular, for the cavity-enhanced parametric oscillation and detection processes, we analyze the limiting factors of the detectable bandwidth and measurement deviation from the generated value, which indicates that the length difference and propagation loss between two optical parametric amplifiers should be as small as possible to improve the detection performance. The experimental results confirm our theoretical analysis.

3.
World J Microbiol Biotechnol ; 39(2): 42, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36513951

RESUMEN

Driven by the massive demand in recent years, the production of ß-alanine has significantly progressed in chemical and biological ways. Although the chemical method is relatively mature compared to biological synthesis, its high cost of waste disposal and environmental pollution does not meet the environmental protection standard. Hence, the biological method has become more prevalent as a potential alternative to the chemical synthesis of ß-alanine in recent years. As a result, the aspartate pathway from L-aspartate to ß-alanine (the most significant rate-limiting step in the ß-alanine synthesis) catalyzed by L-aspartate-α-decarboxylase (ADC) has become a research hotspot in recent years. Therefore, it is vital to comprehensively understand the different enzymes that possess a similar catalytic ability to ADC. This review will investigate the exploratory process of unique synthesis features and catalytic properties of ADC/ADC-like enzymes in particular creatures with similar catalytic capacity or high sequence homology. At the same time, we will discuss the different ß-alanine production methods which can apply to future industrialization.


Asunto(s)
Glutamato Descarboxilasa , Isoenzimas , Glutamato Descarboxilasa/metabolismo , Ácido Aspártico/metabolismo , beta-Alanina
4.
Opt Lett ; 46(8): 1844-1847, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857087

RESUMEN

To scale quantum information processing, quantum state distributors are an indispensable technology in quantum networks. We present a universal scheme of a continuous variable quantum state distributor that performs point-to-multipoint distributions via quantum teleportation with partially disembodied transport. The fidelity of the state at the output nodes can be conveniently manipulated as needed by engineering the correlation noise of the Einstein-Podolsky-Rosen (EPR) beam. For a 1→2 distributor, controllable distributions were demonstrated by manipulating the squeezing factor of EPR entanglement. The fidelities of the two receivers gradually changed from (2/3, 2/3) to (0.95, 0.17) corresponding to the transition from symmetric to asymmetric quantum cloning.

5.
Int J Hyperthermia ; 37(1): 1066-1073, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32924654

RESUMEN

PURPOSE: Quantitative dynamic contrast-enhanced ultrasonography (CEUS) reflects tumor blood perfusion. There are very few studies on the relationship between intrahepatic recurrence of hepatocellular carcinoma (HCC) and tumor perfusion. We investigated the correlation of dynamic CEUS parameters with intrahepatic recurrence after radiofrequency ablation (RFA). METHODS: This retrospective study enrolled 125 native HCC patients who underwent RFA between September 2017 and January 2019 with curative intent. Pre-ablation quantitative dynamic CEUS was performed. CEUS parameters were extracted from time-intensity curves. The correlation of CEUS parameters with intrahepatic recurrence was investigated. RESULTS: The mean follow-up time was 21.6 ± 7.9 months. The recurrence rate was 33.6%. Univariate and multivariate analyses revealed that tumor peak intensity (PI) was a significant independent risk factor for intrahepatic recurrence after RFA (hazard ratio (HR), 0.3; 95% CI, 0.1-0.9). A PI of 58.8% (area under curve, 0.72; 95% CI, 0.63-0.81) was considered as the optimal cutoff level to predict the intrahepatic recurrence of HCC in patients after RFA. The recurrence-free survival rate in patients with a PI > 58.8% was 94.4% at 1 year and 77.8% at 2 years. Subgroup analysis showed that the HR of time to peak (TTP) in intrahepatic recurrence was 1.1417 (95% CI, 0.9748-1.1436; p = 0.1973) in the patient group with tumor diameter > 31 mm. CONCLUSION: CEUS is commonly used in HCC patients who undergo RFA. The CEUS parameters PI and TTP are associated with intrahepatic recurrence after RFA, and can thus be used to identify patients at risk for intrahepatic recurrence.


Asunto(s)
Carcinoma Hepatocelular , Ablación por Catéter , Neoplasias Hepáticas , Ablación por Radiofrecuencia , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Estudios de Cohortes , Medios de Contraste , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Ultrasonografía
6.
Opt Express ; 27(5): 7064-7071, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876278

RESUMEN

We theoretically analyze and experimentally investigate the dependence of residual amplitude modulation (RAM) on the beam radius within the electro-optic crystal (EOC), the wedge angle of the EOC and the overlap efficiency between the extraordinary and ordinary beams, and the overlap efficiency is determined by the distance from the wedge facet to the downstream polarizer. The results show that the RAM with the maximum optical path difference Δ at the edge of light spot presents a sinc-like curve,and the magnitude of Δ is directly proportional to the beam radius and the wedge angle. As a scaling factor, with the decrease of the overlap efficiency between the ordinary and extraordinary beams, the RAM can be further reduced.

7.
ACS Biomater Sci Eng ; 10(3): 1302-1322, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38346448

RESUMEN

The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.


Asunto(s)
Sistema de Administración de Fármacos con Nanopartículas , Nanopartículas , Sistemas de Liberación de Medicamentos , Regeneración Ósea/fisiología , Nanopartículas/uso terapéutico , Nanopartículas/química , Ingeniería de Tejidos
8.
STAR Protoc ; 5(1): 102858, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294907

RESUMEN

In deep tissue, optogenetics faces limitations with visible light. Here, we present a protocol for near-infrared (NIR) optogenetics manipulation of neurons and motor behavior in Caenorhabditis elegans using emissive upconversion nanoparticles (UCNPs). We describe steps for synthesizing and modifying UCNPs. We then detail procedures for regulating neurons using these UCNPs in the model organism C. elegans. Using NIR light allows for superior tissue penetration to manipulate neuronal activities and locomotion behavior. For complete details on the use and execution of this protocol, please refer to Guo et al.,1 Ao et al.,2 and Zhang et al.3.


Asunto(s)
Caenorhabditis elegans , Nanopartículas , Animales , Optogenética/métodos , Neuronas/fisiología , Luz
9.
Sci Total Environ ; 916: 170228, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38272085

RESUMEN

The remote region of the South China Sea (SCS), situated far from urban mainland areas, is commonly perceived to experience minimal pollution. However, this may evolve into a considerably polluted region owing to increasing anthropogenic pollutants. In this study, we employ a multidisciplinary approach to analyze the surface sediments collected from the offshore area of the southern SCS. Our aim is to explore potential anthropogenic pollutants, their interactions, and the related controlling factors. This research endeavors to enhance our understanding of the current pollution status in the SCS and help making relevant policy management decisions. Comparison with previous reports reveals that now, the area is more extensively and increasingly contaminated by petroleum hydrocarbons and heavy metals (Cd and As) than before. For the first time, we report the recognition of coprostanol and long-chain alkyl mid-chain ketones, unveiling the noticeable incorporation of sewage fecal matter and biomass burning into offshore sediments. Moreover, sedimentary multipollutants (except ketones) exhibit strong correlations with terrestrial elements and fine-sized particles, displaying a roughly high-west/low-east spatial variability in pollutant accumulation or enrichment. These signatures evidently demonstrate the major impact of river discharges (e.g., the Mekong River to the west and the Pearl and Red Rivers to the north) on the SCS. They have hydrodynamic effects on the subsequent basin-wide dispersal of pollutants, driven by monsoon-induced large- and regional-scale currents. The different behavior of burning-related ketones may be partly due to their aerosol form, leading to atmospheric transportation. Because anthropogenic multipollutants pose compounded threats, exacerbating oceanic warming and acidification to marine ecosystems such as the widespread coral reefs in the southern SCS, scientific management of urban emissions is required to mitigate ecosystem degradation in the Anthropocene era.

10.
Mater Today Bio ; 24: 100943, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38269054

RESUMEN

The treatment of bone defects is a difficult problem in orthopedics. The excessive destruction of local bone tissue at defect sites destroys blood supply and renders bone regeneration insufficient, which further leads to delayed union or even nonunion. To solve this problem, in this study, we incorporated icariin into alginate/mineralized collagen (AMC) hydrogel and then placed the drug-loaded hydrogel into the pores of a 3D-printed porous titanium alloy (AMCI/PTi) scaffold to prepare a bioactive scaffold with the dual functions of promoting angiogenesis and bone regeneration. The experimental results showed that the ACMI/PTi scaffold had suitable mechanical properties, sustained drug release function, and excellent biocompatibility. The released icariin and mineralized collagen (MC) synergistically promoted angiogenesis and osteogenic differentiation in vitro. After implantation into a rabbit radius defect, the composite scaffold showed a satisfactory effect in promoting bone repair. Therefore, this composite dual-functional scaffold could meet the requirements of bone defect treatment and provide a promising strategy for the repair of large segmental bone defects in clinic.

11.
Mater Today Bio ; 25: 100972, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38312799

RESUMEN

The contamination of bone defects is a serious therapeutic problem. The treatment of infected bone defects involves rigorous infection control followed by bone reconstruction. Considering these two processes, the development of biomaterials possessing antibacterial and osteogenic properties offers a promising approach for the treatment of infected bone defects. In this study, a dual-functional, thermosensitive, and injectable hydrogel composed of chitosan (CS), quaternized CS (QCS), and nano-hydroxyapatite (nHA) was designed, and the ratio of CS to QCS in the hydrogel was optimized to enhance the antibacterial efficacy of CS while reducing the cytotoxicity of QCS. In vitro studies demonstrated that the hydrogel with an 85 %:15 % ratio of CS to QCS exhibited excellent biocompatibility and antibacterial properties while also possessing suitable mechanical characteristics and degradability. The incorporation of nHA into the hydrogel enhanced MC3T3-E1 proliferation and osteogenic differentiation. Moreover, this hydrogel demonstrated superior in vivo therapeutic effectiveness in a rabbit model of infected bone defect. In summary, this study provides a promising material design and a comprehensive one-step treatment strategy for infected bone defects.

12.
PNAS Nexus ; 3(7): pgae234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957449

RESUMEN

Leak potassium (K+) currents, conducted by two-pore domain K+ (K2P) channels, are critical for the stabilization of the membrane potential. The effect of K2P channels on motor rhythm remains enigmatic. We show here that the K2P TWK-40 contributes to the rhythmic defecation motor program (DMP) in Caenorhabditis elegans. Disrupting TWK-40 suppresses the expulsion defects of nlp-40 and aex-2 mutants. By contrast, a gain-of-function (gf) mutant of twk-40 significantly reduces the expulsion frequency per DMP cycle. In situ whole-cell patch clamping demonstrates that TWK-40 forms an outward current that hyperpolarize the resting membrane potential of dorsorectal ganglion ventral process B (DVB), an excitatory GABAergic motor neuron that activates expulsion muscle contraction. In addition, TWK-40 substantially contributes to the rhythmic activity of DVB. Specifically, DVB Ca2+ oscillations exhibit obvious defects in loss-of-function (lf) mutant of twk-40. Expression of TWK-40(gf) in DVB recapitulates the expulsion deficiency of the twk-40(gf) mutant, and inhibits DVB Ca2+ oscillations in both wild-type and twk-40(lf) animals. Moreover, DVB innervated enteric muscles also exhibit rhythmic Ca2+ defects in twk-40 mutants. In summary, these findings establish TWK-40 as a crucial neuronal stabilizer of DMP, linking leak K2P channels with rhythmic motor activity.

13.
J Colloid Interface Sci ; 639: 24-32, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36804790

RESUMEN

Obtaining efficient, stable, and low-cost electrocatalysts is the key to realizing large-scale water splitting. In this work, three-dimensional (3D) hierarchical γ-iron oxyhydroxide (γ-FeOOH)/Ni3S2 electrocatalyst on Ni foam is constructed for electrochemical overall water splitting. The 3D γ-FeOOH/Ni3S2 heterostructure can effectively enhance active sites and charge transfer capability, also the heterostructure can benefit electronic effect at the interfaces and synergistic effect of multiple components. Therefore, the γ-FeOOH/Ni3S2 exhibits excellent electrocatalytic activity with low overpotentials of 279 mV at 50 mA⋅cm-2 for oxygen evolution reaction and 92 mV at 10 mA⋅cm-2 for hydrogen evolution reaction, respectively. In addition, only a potential of 1.66 V is needed to attain 10 mA⋅cm-2 for the overall water splitting. In particular, the γ-FeOOH/Ni3S2 exhibits long-term stability for 120 h at 10 mA⋅cm-2 without significant degradation. This work provides a valuable idea for obtaining low-cost and high performance bifunctional electrocatalysts for water splitting.

14.
Int J Nanomedicine ; 18: 1433-1468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992822

RESUMEN

With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.


Asunto(s)
Neoplasias , Terapia Fototérmica , Humanos , Nanomedicina , Neoplasias/terapia , Neoplasias/patología , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
15.
Materials (Basel) ; 16(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444994

RESUMEN

Bi2O3 is a promising sintering additive for YSZ that not only decreases its sintering temperature but also increases its ionic conductivity. However, Bi2O3 preferably grows into large-sized rods. Moreover, the addition of Bi2O3 induces phase instability of YSZ and the precipitation of monoclinic ZrO2, which is unfavorable for the electrical property. In order to precisely control the morphology and size of Bi2O3, a microemulsion method was introduced. Spherical Bi2O3 nanoparticles were obtained from the formation of microemulsion bubbles at the water-oil interface due to the interaction between the two surfactants. Nanosized Bi2O3-YSZ composite powders with good mixing uniformity dramatically decreased the sintering temperature of YSZ to 1000 °C. Y2O3-stabilized Bi2O3 (YSB)-YSZ composite powders were also fabricated, which did not affect the phase of YSZ but decreased its sintering temperature. Meanwhile, the oxygen vacancy concentration further increased to 64.9% of the total oxygen with the addition of 5 mol% YSB. In addition, its ionic conductivity reached 0.027 S·cm-1 at 800 °C, one order of magnitude higher than that of YSZ. This work provides a new strategy to simultaneously decrease the sintering temperature, stabilize the phase and increase the conductivity of YSZ electrolytes.

16.
Materials (Basel) ; 16(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36676384

RESUMEN

The widespread use of petroleum-based products has led to increasing environmental and ecological problems, while the extraction and application of various natural cellulose fibers have received increasing attention. This research focuses on the extraction of cellulose fibers from cow dung using different treatments: hot water, hydrogen peroxide (H2O2), sodium hydroxide (NaOH) and potassium hydroxide (KOH) boilings, as well as a selection of the best quality cow dung fibers for papermaking with quality control. The study's objective is to find a sustainable method to extract as much material as possible from renewable biomass feedstock. The results show that the best extraction rate is obtained by KOH boiling with 42% cellulose fibers extracted. Corresponding handmade paper has a burst index of 2.48 KPam2/g, a tear index of 4.83 mNm2/g and a tensile index of 26.72 Nm/g. This project expands the sources of natural cellulose fibers to an eco-friendly and sustainable one and opens up new applications for cow dung.

17.
ACS Biomater Sci Eng ; 9(8): 4953-4968, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37478342

RESUMEN

The decellularized bone matrix (DCB) provides a promising bone substitute for the treatment of bone defects because of its similar biochemical, biophysical, and mechanical properties to normal bone tissue. However, the decellularized procedure also greatly reduced its osteogenic induction activity. In this study, peptides derived from the knuckle epitope of bone morphogenetic protein-2 were incorporated into the thermo-sensitive hydrogel poloxamer 407, and the peptide-loaded hydrogel was then filled into the pores of DCB to construct a functionalized scaffold with enhanced osteogenesis. In vitro studies have shown that the functionalized DCB scaffold possessed appropriate mechanical properties and biocompatibility and exhibited a sustained release profile of osteogenic peptide. These performances critically facilitated cell proliferation and cell spreading of bone marrow mesenchymal stem cells and upregulated the expression of osteogenic-related genes by activating the Smad/Runx2 signaling pathway, thereby promoting osteogenic differentiation and extracellular matrix mineralization. Further in vivo studies demonstrated that the functionalized DCB scaffold accelerated the repair of critical radial defects in rabbits without inducing excessive graft-related inflammatory responses. These results suggest a clinically meaningful strategy for the treatment of large segmental bone defects, and the prepared osteogenic peptide modified composite DCB scaffold has great application potential for bone regeneration.


Asunto(s)
Matriz Ósea , Osteogénesis , Animales , Conejos , Osteogénesis/genética , Andamios del Tejido/química , Regeneración Ósea , Péptidos/farmacología , Péptidos/química , Hidrogeles/farmacología
18.
Colloids Surf B Biointerfaces ; 225: 113255, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36924650

RESUMEN

Bacterial bone infection in open fractures is an urgent problem to solve in orthopedics. Antimicrobial peptides (AMPs), as a part of innate immune defense, have good biocompatibility. Their antibacterial mechanism and therapeutic application against bacteria have been widely studied. Compared with traditional antibiotics, AMPs do not easily cause bacterial resistance and can be a reliable substitute for antibiotics in the future. Therefore, various physical and chemical strategies have been developed for the combined application of AMPs and bioactive materials to infected sites, which are conducive to maintaining the local stability of AMPs, reducing many complications, and facilitating bone infection resolution. This review explored the molecular structure, function, and direct and indirect antibacterial mechanisms of AMPs, introduced two important AMPs (LL-37 and ß-defensins) in bone tissues, and reviewed advanced AMP loading strategies and different bioactive materials. Finally, the latest progress and future development of AMPs-loaded bioactive materials for the promotion of bone infection repair were discussed. This study provided a theoretical basis and application strategy for the treatment of bone infection with AMP-loaded bioactive materials.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Infecciones Bacterianas , Humanos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Bacterias
19.
Int J Nanomedicine ; 17: 3511-3529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966148

RESUMEN

Sonodynamic therapy (SDT) is a rapidly developing non-surgical therapy that initiates sensitizers' catalytic reaction using ultrasound, showing great potential for cancer treatment due to its high safety and non-invasive nature. In addition, recent research has found that using different diagnostic and therapeutic methods in tandem can lead to better anticancer outcomes. Therefore, as essential components of SDT, sonosensitizers have been extensively explored to optimize their functions and integrate multiple medical fields. The review is based on five years of articles evaluating the combined use of SDT and imaging in treating cancer. By developing multifunctional sonosensitive particles that combine imaging and sonodynamic therapy, we have integrated diagnosis into the treatment of precision medicine applications, improving SDT cell uptake and antitumor efficacy utilizing different tumour models. This paper describes the imaging principle and the results of cellular and animal imaging of the multifunctional sonosensitizers. Efforts are made in this paper to provide data and design references for future SDT combined imaging research and clinical application development and to provide offer suggestions.


Asunto(s)
Antineoplásicos , Neoplasias , Terapia por Ultrasonido , Animales , Antineoplásicos/uso terapéutico , Terapia Combinada , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Medicina de Precisión
20.
Front Bioeng Biotechnol ; 10: 899760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600891

RESUMEN

The treatment of infected bone defects includes infection control and repair of the bone defect. The development of biomaterials with anti-infection and osteogenic ability provides a promising strategy for the repair of infected bone defects. Owing to its antibacterial properties, chitosan (an emerging natural polymer) has been widely studied in bone tissue engineering. Moreover, it has been shown that chitosan promotes the adhesion and proliferation of osteoblast-related cells, and can serve as an ideal carrier for bone-promoting substances. In this review, the specific molecular mechanisms underlying the antibacterial effects of chitosan and its ability to promote bone repair are discussed. Furthermore, the properties of several kinds of functionalized chitosan are analyzed and compared with those of pure chitosan. The latest research on the combination of chitosan with different types of functionalized materials and biomolecules for the treatment of infected bone defects is also summarized. Finally, the current shortcomings of chitosan-based biomaterials for the treatment of infected bone defects and future research directions are discussed. This review provides a theoretical basis and advanced design strategies for the use of chitosan-based biomaterials in the treatment of infected bone defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA