Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pathol ; 258(4): 382-394, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36073856

RESUMEN

PTEN is one of the most commonly inactivated tumour suppressor genes in sporadic cancer. Germline heterozygous PTEN gene alterations also underlie PTEN hamartoma tumour syndrome (PHTS), a rare human cancer-predisposition condition. A key feature of systemic PTEN deregulation is the inability to adequately dampen PI3-kinase (PI3K)/mTORC1 signalling. PI3K/mTORC1 pathway inhibitors such as rapamycin are therefore expected to neutralise the impact of PTEN loss, rendering this a more druggable context compared with those of other tumour suppressor pathways such as loss of TP53. However, this has not been explored in cancer prevention in a model of germline cancer predisposition, such as PHTS. Clinical trials of short-term treatment with rapamycin have recently been initiated for PHTS, focusing on cognition and colon polyposis. Here, we administered a low dose of rapamycin from the age of 6 weeks onwards to mice with heterozygous germline Pten loss, a mouse model that recapitulates most characteristics of human PHTS. Rapamycin was well tolerated and led to a highly significant improvement of survival in both male and female mice. This was accompanied by a delay in, but not full blockade of, the development of a range of proliferative lesions, including gastro-intestinal and thyroid tumours and endometrial hyperplasia, with no impact on mammary and prostate tumours, and no effect on brain overgrowth. Our data indicate that rapamycin may have cancer prevention potential in human PHTS. This might also be the case for sporadic cancers in which genetic PI3K pathway activation is an early event in tumour development, such as endometrial cancer and some breast cancers. To the best of our knowledge, this is the first report of a long-term treatment of a germline cancer predisposition model with a PI3K/mTOR pathway inhibitor. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Síndrome de Hamartoma Múltiple , Neoplasias de la Tiroides , Ratones , Animales , Masculino , Femenino , Humanos , Lactante , Sirolimus/farmacología , Sirolimus/uso terapéutico , Fosfatidilinositol 3-Quinasas/genética , Longevidad , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Síndrome de Hamartoma Múltiple/tratamiento farmacológico , Síndrome de Hamartoma Múltiple/genética , Síndrome de Hamartoma Múltiple/patología , Fosfatidilinositol 3-Quinasa/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Células Germinativas/metabolismo , Mutación de Línea Germinal
2.
Biochem J ; 459(2): 275-87, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24467442

RESUMEN

The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser487 in the 'ST loop' (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr172. Surprisingly, the equivalent site on AMPK-α2, Ser491, is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr172 phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca2+ ionophore A23187, effects we show to be dependent on Akt activation and Ser487 phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr172 phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)-AMPK pathway, which would otherwise inhibit cell growth and proliferation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación hacia Abajo/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Modelos Moleculares , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/genética
3.
Adv Biol Regul ; 91: 100989, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839992

RESUMEN

PTEN is a phosphoinositide lipid phosphatase and an important tumour suppressor protein. PTEN function is reduced or lost in around a third of all human cancers through diverse mechanisms, from gene deletion to changes in the function of proteins which regulate PTEN through direct protein binding. Here we present data from SILAC (Stable Isotope Labelling by Amino acids in Cell culture) proteomic screens to identify proteins which bind to PTEN. These experiments using untransformed epithelial cells and glioma cells identified several novel candidate proteins in addition to many previously identified PTEN binding partners and many proteins which are recognised as common false positives using these methods. From subsequent co-expression pull-down experiments we provide further evidence supporting the physical interaction of PTEN with MMP1, Myosin 18A and SHROOM3. We also performed yeast two-hybrid screens which identify the previously recognised PTEN binding partner MSP58 in addition to the nuclear import export receptor TNPO3. These experiments identify several novel candidate binding partners of PTEN and provide further data addressing the set of proteins that interact with this important tumour suppressor.


Asunto(s)
Neoplasias , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteómica , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Genes Supresores de Tumor , Proteínas/genética , Neoplasias/genética , Unión Proteica , beta Carioferinas/genética , beta Carioferinas/metabolismo
4.
Subcell Biochem ; 58: 281-336, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22403079

RESUMEN

Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/enzimología , Miopatías Estructurales Congénitas/enzimología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Sistemas de Mensajero Secundario , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Regulación de la Expresión Génica , Humanos , Hidrólisis , Mutación , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras/genética , Especificidad por Sustrato
5.
Cancer Discov ; 9(9): 1306-1323, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31217297

RESUMEN

The function of PTEN in the cytoplasm largely depends on its lipid-phosphatase activity, though which it antagonizes the PI3K-AKT oncogenic pathway. However, molecular mechanisms underlying the role of PTEN in the nucleus remain largely elusive. Here, we report that DNA double-strand breaks (DSB) promote PTEN interaction with MDC1 upon ATM-dependent phosphorylation of T/S398-PTEN. Importantly, DNA DSBs enhance NSD2 (MMSET/WHSC1)-mediated dimethylation of PTEN at K349, which is recognized by the tudor domain of 53BP1 to recruit PTEN to DNA-damage sites, governing efficient repair of DSBs partly through dephosphorylation of γH2AX. Of note, inhibiting NSD2-mediated methylation of PTEN, either through expressing methylation-deficient PTEN mutants or through inhibiting NSD2, sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor and DNA-damaging agents in both cell culture and in vivo xenograft models. Therefore, our study provides a novel molecular mechanism for PTEN regulation of DSB repair in a methylation- and protein phosphatase-dependent manner. SIGNIFICANCE: NSD2-mediated dimethylation of PTEN is recognized by the 53BP1 tudor domain to facilitate PTEN recruitment into DNA-damage sites, governing efficient repair of DNA DSBs. Importantly, inhibiting PTEN methylation sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor combined with DNA-damaging agents in both cell culture and in vivo xenograft models.This article is highlighted in the In This Issue feature, p. 1143.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Neoplasias/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Femenino , Células HCT116 , Humanos , Metilación , Ratones , Células 3T3 NIH , Neoplasias/metabolismo , Fosfohidrolasa PTEN/química , Fosforilación , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
6.
Sci Signal ; 5(213): ra18, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22375056

RESUMEN

The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has a well-characterized lipid phosphatase activity and a poorly characterized protein phosphatase activity. We show that both activities are required for PTEN to inhibit cellular invasion and to mediate most of its largest effects on gene expression. PTEN appears to dephosphorylate itself at threonine 366, and mutation of this site makes lipid phosphatase activity sufficient for PTEN to inhibit invasion. We propose that the dominant role for PTEN's protein phosphatase activity is autodephosphorylation-mediated regulation of its lipid phosphatase activity. Because PTEN's regulation of invasion and these changes in gene expression required lipid phosphatase activity, but did not correlate with the total cellular abundance of its phosphatidylinositol 3,4,5-trisphosphate (PIP3) lipid substrate or AKT activity, we propose that localized PIP3 signaling may play a role in those PTEN-mediated processes that depend on both its protein and lipid phosphatase activities. Finally, we identified a tumor-derived PTEN mutant selectively lacking protein phosphatase activity, indicating that in some circumstances the regulation of invasion and not that of AKT can correlate with PTEN-mediated tumor suppression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sistemas de Mensajero Secundario , Línea Celular Tumoral , Células HEK293 , Humanos , Mutación Missense , Invasividad Neoplásica , Fosfohidrolasa PTEN/genética , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA