Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Cell ; 84(5): 955-966.e4, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325379

RESUMEN

SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a "sequential" or "bypassing" mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.


Asunto(s)
Receptores Acoplados a Proteínas G , Ácido Succínico , Ratones , Ratas , Animales , Humanos , Ácido Succínico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular , Succinatos/metabolismo , Estrés Fisiológico
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38261338

RESUMEN

The vast amount of available sequencing data allows the scientific community to explore different genetic alterations that may drive cancer or favor cancer progression. Software developers have proposed a myriad of predictive tools, allowing researchers and clinicians to compare and prioritize driver genes and mutations and their relative pathogenicity. However, there is little consensus on the computational approach or a golden standard for comparison. Hence, benchmarking the different tools depends highly on the input data, indicating that overfitting is still a massive problem. One of the solutions is to limit the scope and usage of specific tools. However, such limitations force researchers to walk on a tightrope between creating and using high-quality tools for a specific purpose and describing the complex alterations driving cancer. While the knowledge of cancer development increases daily, many bioinformatic pipelines rely on single nucleotide variants or alterations in a vacuum without accounting for cellular compartments, mutational burden or disease progression. Even within bioinformatics and computational cancer biology, the research fields work in silos, risking overlooking potential synergies or breakthroughs. Here, we provide an overview of databases and datasets for building or testing predictive cancer driver tools. Furthermore, we introduce predictive tools for driver genes, driver mutations, and the impact of these based on structural analysis. Additionally, we suggest and recommend directions in the field to avoid silo-research, moving towards integrative frameworks.


Asunto(s)
Neoplasias , Oncogenes , Benchmarking , Biología Computacional , Consenso , Mutación , Neoplasias/genética
3.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37551622

RESUMEN

Prediction of driver genes (tumor suppressors and oncogenes) is an essential step in understanding cancer development and discovering potential novel treatments. We recently proposed Moonlight as a bioinformatics framework to predict driver genes and analyze them in a system-biology-oriented manner based on -omics integration. Moonlight uses gene expression as a primary data source and combines it with patterns related to cancer hallmarks and regulatory networks to identify oncogenic mediators. Once the oncogenic mediators are identified, it is important to include extra levels of evidence, called mechanistic indicators, to identify driver genes and to link the observed gene expression changes to the underlying alteration that promotes them. Such a mechanistic indicator could be for example a mutation in the regulatory regions for the candidate gene. Here, we developed new functionalities and released Moonlight2 to provide the user with a mutation-based mechanistic indicator as a second layer of evidence. These functionalities analyze mutations in a cancer cohort to classify them into driver and passenger mutations. Those oncogenic mediators with at least one driver mutation are retained as the final set of driver genes. We applied Moonlight2 to the basal-like breast cancer subtype, lung adenocarcinoma and thyroid carcinoma using data from The Cancer Genome Atlas. For example, in basal-like breast cancer, we found four oncogenes (COPZ2, SF3B4, KRTCAP2 and POLR2J) and nine tumor suppressor genes (KIR2DL4, KIF26B, ARL15, ARHGAP25, EMCN, GMFG, TPK1, NR5A2 and TEK) containing a driver mutation in their promoter region, possibly explaining their deregulation. Moonlight2R is available at https://github.com/ELELAB/Moonlight2R.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Neoplasias , Humanos , Femenino , Flujo de Trabajo , Oncogenes , Neoplasias/genética , Mutación , Neoplasias de la Mama/genética , Neoplasias Pulmonares/genética , Redes Reguladoras de Genes , Factores de Empalme de ARN/genética , ARN Polimerasa II/genética
4.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35323860

RESUMEN

Mutations, which result in amino acid substitutions, influence the stability of proteins and their binding to biomolecules. A molecular understanding of the effects of protein mutations is both of biotechnological and medical relevance. Empirical free energy functions that quickly estimate the free energy change upon mutation (ΔΔG) can be exploited for systematic screenings of proteins and protein complexes. In silico saturation mutagenesis can guide the design of new experiments or rationalize the consequences of known mutations. Often software such as FoldX, while fast and reliable, lack the necessary automation features to apply them in a high-throughput manner. We introduce MutateX, a software to automate the prediction of ΔΔGs associated with the systematic mutation of each residue within a protein, or protein complex to all other possible residue types, using the FoldX energy function. MutateX also supports ΔΔG calculations over protein ensembles, upon post-translational modifications and in multimeric assemblies. At the heart of MutateX lies an automated pipeline engine that handles input preparation, parallelization and outputs publication-ready figures. We illustrate the MutateX protocol applied to different case studies. The results of the high-throughput scan provided by our tools can help in different applications, such as the analysis of disease-associated mutations, to complement experimental deep mutational scans, or assist the design of variants for industrial applications. MutateX is a collection of Python tools that relies on open-source libraries. It is available free of charge under the GNU General Public License from https://github.com/ELELAB/mutatex.


Asunto(s)
Proteínas , Programas Informáticos , Sustitución de Aminoácidos , Mutagénesis , Mutación , Proteínas/química , Proteínas/genética
5.
J Chem Inf Model ; 63(23): 7274-7281, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37977136

RESUMEN

Computational methods relying on protein structure strongly depend on the structure selected for investigation. Typical sources of protein structures include experimental structures available at the Protein Data Bank (PDB) and high-quality in silico model structures, such as those available at the AlphaFold Protein Structure Database. Either option has significant advantages and drawbacks, and exploring the wealth of available structures to identify the most suitable ones for specific applications can be a daunting task. We provide an open-source software package, PDBminer, with the purpose of making structure identification and selection easier, faster, and less error prone. PDBminer searches the AlphaFold Database and the PDB for available structures of interest and provides an up-to-date, quality-ranked table of structures applicable for further use. PDBminer provides an overview of the available protein structures to one or more input proteins, parallelizing the runs if multiple cores are specified. The output table reports the coverage of the protein structures aligned to the UniProt sequence, overcoming numbering differences in PDB structures and providing information regarding model quality, protein complexes, ligands, and nucleic acid chain binding. The PDBminer2coverage and PDBminer2network tools assist in visualizing the results. PDBminer can be applied to overcome the tedious task of choosing a PDB structure without losing the wealth of additional information available in the PDB. Here, we showcase the main functionalities of the package on the p53 tumor suppressor protein. The package is available at http://github.com/ELELAB/PDBminer.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Simulación por Computador , Bases de Datos de Proteínas , Ligandos
6.
J Chem Inf Model ; 63(14): 4237-4245, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37437128

RESUMEN

Due to the complex nature of noncovalent interactions and their long-range effects, analyzing protein conformations using network theory can be enlightening. Protein Structure Networks (PSNs) provide a convenient formalism to study protein structures in relation to essential properties such as key residues for structural stability, allosteric communication, and the effects of modifications of the protein. PSNs can be defined according to very different principles, and the available tools have limitations in input formats, supported models, and version control. Other outstanding problems are related to the definition of network cutoffs and the assessment of the stability of the network properties. The protein science community could benefit from a common framework to carry out these analyses and make them easier to reproduce, reuse, and evaluate. We here provide two open-source software packages, PyInteraph2 and PyInKnife2, to implement and analyze PSNs in a reproducible and documented manner. PyInteraph2 interfaces with multiple formats for protein ensembles and incorporates different network models with the possibility of integrating them into a macronetwork and performing various downstream analyses, including hubs, connected components, and several other centrality measures, and visualizes the networks or further analyzes them thanks to compatibility with Cytoscape.PyInKnife2 that supports the network models implemented in PyInteraph2. It employs a jackknife resampling approach to estimate the convergence of network properties and streamline the selection of distance cutoffs. We foresee that the modular structure of the code and the supported version control system will promote the transition to a community-driven effort, boost reproducibility, and establish common protocols in the PSN field. As developers, we will guarantee the introduction of new functionalities and maintenance, assistance, and training of new contributors.


Asunto(s)
Proteínas , Programas Informáticos , Reproducibilidad de los Resultados , Proteínas/química , Conformación Proteica
7.
Bioinformatics ; 34(2): 207-214, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28961796

RESUMEN

Motivation: A deleterious amino acid change in a protein can be compensated by a second-site rescue mutation. These compensatory mechanisms can be mimicked by drugs. In particular, the location of rescue mutations can be used to identify protein regions that can be targeted by small molecules to reactivate a damaged mutant. Results: We present the first general computational method to detect rescue sites. By mimicking the effect of mutations through the application of forces, the double force scanning (DFS) method identifies the second-site residues that make the protein structure most resilient to the effect of pathogenic mutations. We tested DFS predictions against two datasets containing experimentally validated and putative evolutionary-related rescue sites. A remarkably good agreement was found between predictions and experimental data. Indeed, almost half of the rescue sites in p53 was correctly predicted by DFS, with 65% of remaining sites in contact with DFS predictions. Similar results were found for other proteins in the evolutionary dataset. Availability and implementation: The DFS code is available under GPL at https://fornililab.github.io/dfs/. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Simulación por Computador , Mutación , Proteínas/química , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Conformación Proteica , Dominios Proteicos , Proteínas/genética , Proteínas/metabolismo
8.
PLoS Comput Biol ; 13(11): e1005826, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29108014

RESUMEN

New promising avenues for the pharmacological treatment of skeletal and heart muscle diseases rely on direct sarcomeric modulators, which are molecules that can directly bind to sarcomeric proteins and either inhibit or enhance their activity. A recent breakthrough has been the discovery of the myosin activator omecamtiv mecarbil (OM), which has been shown to increase the power output of the cardiac muscle and is currently in clinical trials for the treatment of heart failure. While the overall effect of OM on the mechano-chemical cycle of myosin is to increase the fraction of myosin molecules in the sarcomere that are strongly bound to actin, the molecular basis of its action is still not completely clear. We present here a Molecular Dynamics study of the motor domain of human cardiac myosin bound to OM, where the effects of the drug on the dynamical properties of the protein are investigated for the first time with atomistic resolution. We found that OM has a double effect on myosin dynamics, inducing a) an increased coupling of the motions of the converter and lever arm subdomains to the rest of the protein and b) a rewiring of the network of dynamic correlations, which produces preferential communication pathways between the OM binding site and distant functional regions. The location of the residues responsible for these effects suggests possible strategies for the future development of improved drugs and the targeting of specific cardiomyopathy-related mutations.


Asunto(s)
Miosinas Cardíacas/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica/efectos de los fármacos , Urea/análogos & derivados , Regulación Alostérica , Sitio Alostérico , Miosinas Cardíacas/química , Miosinas Cardíacas/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Urea/farmacología
9.
PLoS Comput Biol ; 11(10): e1004415, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26505632

RESUMEN

There is increasing evidence that protein dynamics and conformational changes can play an important role in modulating biological function. As a result, experimental and computational methods are being developed, often synergistically, to study the dynamical heterogeneity of a protein or other macromolecules in solution. Thus, methods such as molecular dynamics simulations or ensemble refinement approaches have provided conformational ensembles that can be used to understand protein function and biophysics. These developments have in turn created a need for algorithms and software that can be used to compare structural ensembles in the same way as the root-mean-square-deviation is often used to compare static structures. Although a few such approaches have been proposed, these can be difficult to implement efficiently, hindering a broader applications and further developments. Here, we present an easily accessible software toolkit, called ENCORE, which can be used to compare conformational ensembles generated either from simulations alone or synergistically with experiments. ENCORE implements three previously described methods for ensemble comparison, that each can be used to quantify the similarity between conformational ensembles by estimating the overlap between the probability distributions that underlie them. We demonstrate the kinds of insights that can be obtained by providing examples of three typical use-cases: comparing ensembles generated with different molecular force fields, assessing convergence in molecular simulations, and calculating differences and similarities in structural ensembles refined with various sources of experimental data. We also demonstrate efficient computational scaling for typical analyses, and robustness against both the size and sampling of the ensembles. ENCORE is freely available and extendable, integrates with the established MDAnalysis software package, reads ensemble data in many common formats, and can work with large trajectory files.


Asunto(s)
Algoritmos , Simulación de Dinámica Molecular , Reconocimiento de Normas Patrones Automatizadas/métodos , Proteínas/química , Proteínas/ultraestructura , Programas Informáticos , Lenguajes de Programación , Conformación Proteica , Validación de Programas de Computación
10.
PLoS Comput Biol ; 10(9): e1003744, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25187961

RESUMEN

ARID is a DNA-binding domain involved in several transcriptional regulatory processes, including cell-cycle regulation and embryonic development. ARID domains are also targets of the Human Cancer Protein Interaction Network. Little is known about the molecular mechanisms related to conformational changes in the family of ARID domains. Thus, we have examined their structural dynamics to enrich the knowledge on this important family of regulatory proteins. In particular, we used an approach that integrates atomistic simulations and methods inspired by graph theory. To relate these properties to protein function we studied both the free and DNA-bound forms. The interaction with DNA not only stabilizes the conformations of the DNA-binding loops, but also strengthens pre-existing paths in the native ARID ensemble for long-range communication to those loops. Residues in helix 5 are identified as critical mediators for intramolecular communication to the DNA-binding regions. In particular, we identified a distal tyrosine that plays a key role in long-range communication to the DNA-binding loops and that is experimentally known to impair DNA-binding. Mutations at this tyrosine and in other residues of helix 5 are also demonstrated, by our approach, to affect the paths of communication to the DNA-binding loops and alter their native dynamics. Overall, our results are in agreement with a scenario in which ARID domains exist as an ensemble of substates, which are shifted by external perturbation, such as the interaction with DNA. Conformational changes at the DNA-binding loops are transmitted long-range by intramolecular paths, which have their heart in helix 5.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína
11.
J Am Chem Soc ; 136(5): 1803-14, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24392667

RESUMEN

A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.


Asunto(s)
Hidrógeno/química , Hidrogenasas/química , Modelos Químicos , Sitios de Unión , Catálisis , Transporte de Electrón , Gammaproteobacteria/enzimología , Enlace de Hidrógeno , Modelos Moleculares , Estereoisomerismo
12.
J Chem Inf Model ; 54(5): 1537-51, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24702124

RESUMEN

In the last years, a growing interest has been gathering around the ability of Molecular Dynamics (MD) to provide insight into the paths of long-range structural communication in biomolecules. The knowledge of the mechanisms related to structural communication helps in the rationalization in atomistic details of the effects induced by mutations, ligand binding, and the intrinsic dynamics of proteins. We here present PyInteraph, a tool for the analysis of structural ensembles inspired by graph theory. PyInteraph is a software suite designed to analyze MD and structural ensembles with attention to binary interactions between residues, such as hydrogen bonds, salt bridges, and hydrophobic interactions. PyInteraph also allows the different classes of intra- and intermolecular interactions to be represented, combined or alone, in the form of interaction graphs, along with performing network analysis on the resulting interaction graphs. The program also integrates the network description with a knowledge-based force field to estimate the interaction energies between side chains in the protein. It can be used alone or together with the recently developed xPyder PyMOL plugin through an xPyder-compatible format. The software capabilities and associated protocols are here illustrated by biologically relevant cases of study. The program is available free of charge as Open Source software via the GPL v3 license at http://linux.btbs.unimib.it/pyinteraph/.


Asunto(s)
Biología Computacional/métodos , Simulación de Dinámica Molecular , Mapas de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Programas Informáticos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Estructura Terciaria de Proteína , Termodinámica
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167260, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782304

RESUMEN

Lysosomal acid sphingomyelinase (ASM), a critical enzyme in lipid metabolism encoded by the SMPD1 gene, plays a crucial role in sphingomyelin hydrolysis in lysosomes. ASM deficiency leads to acid sphingomyelinase deficiency, a rare genetic disorder with diverse clinical manifestations, and the protein can be found mutated in other diseases. We employed a structure-based framework to comprehensively understand the functional implications of ASM variants, integrating pathogenicity predictions with molecular insights derived from a molecular dynamics simulation in a lysosomal membrane environment. Our analysis, encompassing over 400 variants, establishes a structural atlas of missense variants of lysosomal ASM, associating mechanistic indicators with pathogenic potential. Our study highlights variants that influence structural stability or exert local and long-range effects at functional sites. To validate our predictions, we compared them to available experimental data on residual catalytic activity in 135 ASM variants. Notably, our findings also suggest applications of the resulting data for identifying cases suited for enzyme replacement therapy. This comprehensive approach enhances the understanding of ASM variants and provides valuable insights for potential therapeutic interventions.

14.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140921, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230374

RESUMEN

Molecular dynamics (MD) simulations are a powerful approach to studying the structure and dynamics of proteins related to health and disease. Advances in the MD field allow modeling proteins with high accuracy. However, modeling metal ions and their interactions with proteins is still challenging. NPL4 is a zinc-binding protein and works as a cofactor for p97 to regulate protein homeostasis. NPL4 is of biomedical importance and has been proposed as the target of disulfiram, a drug recently repurposed for cancer treatment. Experimental studies proposed that the disulfiram metabolites, bis-(diethyldithiocarbamate)­copper and cupric ions, induce NPL4 misfolding and aggregation. However, the molecular details of their interactions with NPL4 and consequent structural effects are still elusive. Here, biomolecular simulations can help to shed light on the related structural details. To apply MD simulations to NPL4 and its interaction with copper the first important step is identifying a suitable force field to describe the protein in its zinc-bound states. We examined different sets of non-bonded parameters because we want to study the misfolding mechanism and cannot rule out that the zinc may detach from the protein during the process and copper replaces it. We investigated the force-field ability to model the coordination geometry of the metal ions by comparing the results from MD simulations with optimized geometries from quantum mechanics (QM) calculations using model systems of NPL4. Furthermore, we investigated the performance of a force field including bonded parameters to treat copper ions in NPL4 that we obtained based on QM calculations.


Asunto(s)
Disulfiram , Neoplasias , Humanos , Disulfiram/uso terapéutico , Cobre/química , Neoplasias/tratamiento farmacológico , Proteínas , Zinc/química , Iones/química , Iones/metabolismo
15.
Cell Death Dis ; 14(4): 284, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085483

RESUMEN

S-nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S-nitrosothiol (SNO) adduct. S-nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S-nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S-nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S-nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S-nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S-nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S-nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Óxido Nítrico , Proteínas Oncogénicas , S-Nitrosotioles , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , S-Nitrosotioles/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo
16.
Protein Sci ; 32(1): e4527, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461907

RESUMEN

Reliable prediction of free energy changes upon amino acid substitutions (ΔΔGs) is crucial to investigate their impact on protein stability and protein-protein interaction. Advances in experimental mutational scans allow high-throughput studies thanks to multiplex techniques. On the other hand, genomics initiatives provide a large amount of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computational field should keep the same pace and provide new tools for fast and accurate high-throughput ΔΔG calculations. In this context, the Rosetta modeling suite implements effective approaches to predict folding/unfolding ΔΔGs in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. However, their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols for ΔΔG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cumbersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free energy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Moreover, RosettaDDGPrediction assists with checking completed runs and aggregates raw data for multiple variants, as well as generates publication-ready graphics. We showed the potential of the tool in four case studies, including variants of uncertain significance in childhood cancer, proteins with known experimental unfolding ΔΔGs values, interactions between target proteins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELELAB/RosettaDDGPrediction.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Mutación , Entropía , Estabilidad Proteica
17.
Inorg Chem ; 51(15): 8331-9, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22800191

RESUMEN

DFT/BP86/TZVP and DFT/B3LYP/TZVP have been used to investigate systematically the reaction pathways associated with the H-transfer step, which is the rate-determining step of the reaction HCOO(-) ⇄ CO(2) + H(+) + 2e(-), as catalyzed by metalloenzyme formate dehydrogenase (FDH). Actually, the energetics associated with the transfer from formate to all H (proton or hydride) acceptors that are present within the FDH active site have been sampled. This study points to a viable intimate mechanism in which the metal center mediates H transfer from formate to the final acceptor, i.e. a selenocysteine residue. The Mo-based reaction pathway, consisting of a ß-H elimination to metal with concerted decarboxylation, turned out to be favored over previously proposed routes in which proton transfer occurs directly from HCOO(-) to selenocysteine. The proposed reaction pathway is reminiscent of the key step of metal-based catalysis of the water-gas shift reaction.


Asunto(s)
Proteínas Bacterianas/química , Formiato Deshidrogenasas/química , Formiatos/química , Metaloproteínas/química , Molibdeno/química , Selenocisteína/química , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/enzimología , Cinética , Modelos Moleculares , Protones , Teoría Cuántica , Electricidad Estática , Termodinámica
18.
J Chem Inf Model ; 52(7): 1865-74, 2012 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-22721491

RESUMEN

A versatile method to directly identify and analyze short- or long-range coupled or communicating residues in a protein conformational ensemble is of extreme relevance to achieve a complete understanding of protein dynamics and structural communication routes. Here, we present xPyder, an interface between one of the most employed molecular graphics systems, PyMOL, and the analysis of dynamical cross-correlation matrices (DCCM). The approach can also be extended, in principle, to matrices including other indexes of communication propensity or intensity between protein residues, as well as the persistence of intra- or intermolecular interactions, such as those underlying protein dynamics. The xPyder plugin for PyMOL 1.4 and 1.5 is offered as Open Source software via the GPL v2 license, and it can be found, along with the installation package, the user guide, and examples, at http://linux.btbs.unimib.it/xpyder/.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas/química , Interfaz Usuario-Computador
19.
J Mol Biol ; 434(17): 167663, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35659507

RESUMEN

The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Regulación Alostérica/genética , ADN/química , Humanos , Simulación de Dinámica Molecular , Mutación , Neoplasias/genética , Unión Proteica , Dominios Proteicos , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
20.
Cell Death Dis ; 13(10): 872, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243772

RESUMEN

Cancer genomics and cancer mutation databases have made an available wealth of information about missense mutations found in cancer patient samples. Contextualizing by means of annotation and predicting the effect of amino acid change help identify which ones are more likely to have a pathogenic impact. Those can be validated by means of experimental approaches that assess the impact of protein mutations on the cellular functions or their tumorigenic potential. Here, we propose the integrative bioinformatic approach Cancermuts, implemented as a Python package. Cancermuts is able to gather known missense cancer mutations from databases such as cBioPortal and COSMIC, and annotate them with the pathogenicity score REVEL as well as information on their source. It is also able to add annotations about the protein context these mutations are found in, such as post-translational modification sites, structured/unstructured regions, presence of short linear motifs, and more. We applied Cancermuts to the intrinsically disordered protein AMBRA1, a key regulator of many cellular processes frequently deregulated in cancer. By these means, we classified mutations of AMBRA1 in melanoma, where AMBRA1 is highly mutated and displays a tumor-suppressive role. Next, based on REVEL score, position along the sequence, and their local context, we applied cellular and molecular approaches to validate the predicted pathogenicity of a subset of mutations in an in vitro melanoma model. By doing so, we have identified two AMBRA1 mutations which show enhanced tumorigenic potential and are worth further investigation, highlighting the usefulness of the tool. Cancermuts can be used on any protein targets starting from minimal information, and it is available at https://www.github.com/ELELAB/cancermuts as free software.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Melanoma , Proteínas Adaptadoras Transductoras de Señales , Aminoácidos , Humanos , Melanoma/genética , Mutación Missense/genética , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA