Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36985906

RESUMEN

In fusion reactors, such as ITER or DEMO, the plasma used to generate nuclear reactions will reach temperatures that are an order of magnitude higher than in the Sun's core. Although the plasma is not supposed to be in contact with the reactor walls, a large amount of heat generated by electromagnetic radiation, electrons and ions being expelled from the plasma will reach the plasma-facing surface of the reactor. Especially for the divertor part, high heat fluxes of up to 20 MW/m2 are expected even in normal operating conditions. An improvement in the plasma-facing material (which is, in the case of ITER, pure Tungsten, W) is desired at least in terms of both a higher recrystallization temperature and a lower brittle-to-ductile transition temperature. In the present work, we discuss three microengineering routes based on inclusions of nanometric dispersions, which are proposed to improve the W properties, and present the microstructural and thermophysical properties of the resulting W-based composites with such dispersions. The materials' behavior after 6 MeV electron irradiation tests is also presented, and their further development is discussed.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(2 Pt 2): 025202, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14525037

RESUMEN

Experimental phase synchronization of chaos is demonstrated for two different chaotic oscillators: a plasma discharge and the Chua circuit. Our technique includes real-time capability for observing synchronization-desynchronization transitions. This capability results from a strong combination of synchronization and control, and allows tuning adjustments for search and stabilization of synchronous states. A power law is observed for the mean time between 2pi phase slips for different coupling strenghts. The experimental results are consistent with the numerical simulations.

3.
Rev Sci Instrum ; 79(10): 10F333, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044641

RESUMEN

Dust varies from a few nanometers to a fraction of a millimeter in size. Dust also offers essentially unlimited choices in material composition and structure. The potential of dust for high-temperature plasma diagnostic is largely unfulfilled yet. The principles of dust spectroscopy to measure internal magnetic field, microparticle tracer velocimetry to measure plasma flow, and dust photometry to measure heat flux are described. Two main components of the different dust diagnostics are a dust injector and a dust imaging system. The dust injector delivers a certain number of dust grains into a plasma. The imaging system collects and selectively detects certain photons resulted from dust-plasma interaction. One piece of dust gives the local plasma quantity, a collection of dust grains together reveals either two-dimensional (using only one or two imaging cameras) or three-dimensional (using two or more imaging cameras) structures of the measured quantity. A generic conceptual design suitable for all three types of dust diagnostics is presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA