Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29203486

RESUMEN

Five bis-arylimidamides were assayed as anti-Trypanosoma cruzi agents by in vitro, in silico, and in vivo approaches. None were considered to be pan-assay interference compounds. They had a favorable pharmacokinetic landscape and were active against trypomastigotes and intracellular forms, and in combination with benznidazole, they gave no interaction. The most selective agent (28SMB032) tested in vivo led to a 40% reduction in parasitemia (0.1 mg/kg of body weight/5 days intraperitoneally) but without mortality protection. In silico target fishing suggested DNA as the main target, but ultrastructural data did not match.


Asunto(s)
Amidinas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/tratamiento farmacológico , Masculino , Ratones , Nitroimidazoles/farmacología , Parasitemia/tratamiento farmacológico , Pruebas de Sensibilidad Parasitaria/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-28193658

RESUMEN

African animal trypanosomosis (AAT) is caused by the tsetse fly-transmitted protozoans Trypanosoma congolense and T. vivax and leads to huge agricultural losses throughout sub-Saharan Africa. Three drugs are available to treat nagana in cattle (diminazene diaceturate, homidium chloride, and isometamidium chloride). With increasing reports of drug-resistant populations, new molecules should be investigated as potential candidates to combat nagana. Dicationic compounds have been demonstrated to have excellent efficacy against different kinetoplastid parasites. This study therefore evaluated the activities of 37 diamidines, using in vitro and ex vivo drug sensitivity assays. The 50% inhibitory concentrations obtained ranged from 0.007 to 0.562 µg/ml for T. congolense and from 0.019 to 0.607 µg/ml for T. vivax On the basis of these promising results, 33 of these diamidines were further examined using in vivo mouse models of infection. Minimal curative doses of 1.25 mg/kg of body weight for both T. congolense- and T. vivax-infected mice were seen when the diamidines were administered intraperitoneally (i.p.) over 4 consecutive days. From these observations, 15 of these 33 diamidines were then further tested in vivo, using a single bolus dose for administration. The total cure of mice infected with T. congolense and T. vivax was seen with single i.p. doses of 5 and 2.5 mg/kg, respectively. This study identified a selection of diamidines which could be considered lead compounds for the treatment of nagana.


Asunto(s)
Enfermedades de los Bovinos/tratamiento farmacológico , Pentamidina/farmacología , Trypanosoma congolense/efectos de los fármacos , Trypanosoma vivax/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria , África del Sur del Sahara , Animales , Bovinos , Enfermedades de los Bovinos/parasitología , Resistencia a Medicamentos , Femenino , Ratones , Pruebas de Sensibilidad Parasitaria , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse/parasitología
3.
Bioorg Med Chem ; 24(11): 2451-65, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27102161

RESUMEN

2-(2-Benzamido)ethyl-4-phenylthiazole (1) was one of 1035 molecules (grouped into 115 distinct scaffolds) found to be inhibitory to Trypanosoma brucei, the pathogen causing human African trypanosomiasis, at concentrations below 3.6µM and non-toxic to mammalian (Huh7) cells in a phenotypic high-throughput screen of a 700,000 compound library performed by the Genomics Institute of the Novartis Research Foundation (GNF). Compound 1 and 72 analogues were synthesized in this lab by one of two general pathways. These plus 10 commercially available analogues were tested against T. brucei rhodesiense STIB900 and L6 rat myoblast cells (for cytotoxicity) in vitro. Forty-four derivatives were more potent than 1, including eight with IC50 values below 100nM. The most potent and most selective for the parasite was the urea analogue 2-(2-piperidin-1-ylamido)ethyl-4-(3-fluorophenyl)thiazole (70, IC50=9nM, SI>18,000). None of 33 compounds tested were able to cure mice infected with the parasite; however, seven compounds caused temporary reductions of parasitemia (⩾97%) but with subsequent relapses. The lack of in vivo efficacy was at least partially due to their poor metabolic stability, as demonstrated by the short half-lives of 15 analogues against mouse and human liver microsomes.


Asunto(s)
Amidas/farmacología , Aminas/farmacología , Antiprotozoarios/farmacología , Tiazoles/farmacología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Urea/farmacología , Amidas/química , Aminas/síntesis química , Aminas/química , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Mioblastos/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Ratas , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Urea/análogos & derivados , Urea/química
4.
Antimicrob Agents Chemother ; 58(8): 4452-63, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24867978

RESUMEN

African sleeping sickness is a neglected tropical disease transmitted by tsetse flies. New and better drugs are still needed especially for its second stage, which is fatal if untreated. 28DAP010, a dipyridylbenzene analogue of DB829, is the second simple diamidine found to cure mice with central nervous system infections by a parenteral route of administration. 28DAP010 showed efficacy similar to that of DB829 in dose-response studies in mouse models of first- and second-stage African sleeping sickness. The in vitro time to kill, determined by microcalorimetry, and the parasite clearance time in mice were shorter for 28DAP010 than for DB829. No cross-resistance was observed between 28DAP010 and pentamidine on the tested Trypanosoma brucei gambiense isolates from melarsoprol-refractory patients. 28DAP010 is the second promising preclinical candidate among the diamidines for the treatment of second-stage African sleeping sickness.


Asunto(s)
Amidinas/farmacología , Piridinas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei gambiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Amidinas/síntesis química , Amidinas/farmacocinética , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Melarsoprol/farmacocinética , Melarsoprol/farmacología , Ratones , Pentamidina/farmacocinética , Pentamidina/farmacología , Piridinas/síntesis química , Piridinas/farmacocinética , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/farmacocinética , Trypanosoma brucei gambiense/crecimiento & desarrollo , Trypanosoma brucei gambiense/patogenicidad , Trypanosoma brucei rhodesiense/crecimiento & desarrollo , Trypanosoma brucei rhodesiense/patogenicidad , Tripanosomiasis Africana/parasitología
5.
Antimicrob Agents Chemother ; 58(7): 3720-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24752263

RESUMEN

Chagas disease (CD), a neglected tropical disease caused by Trypanosoma cruzi, remains a serious public health problem in several Latin American countries. The available chemotherapies for CD have limited efficacy and exhibit undesirable side effects. Aromatic diamidines and arylimidamides (AIAs) have shown broad-spectrum activity against intracellular parasites, including T. cruzi. Therefore, our aim was to evaluate the biological activity of eight novel AIAs (16DAP002, 16SAB079, 18SAB075, 23SMB022, 23SMB026, 23SMB054, 26SMB070, and 27SMB009) against experimental models of T. cruzi infection in vitro and in vivo. Our data show that none of the compounds induced a loss of cellular viability up to 32 µM. Two AIAs, 18SAB075 and 16DAP002, exhibited good in vitro activity against different parasite strains (Y and Tulahuen) and against the two relevant forms of the parasite for mammalian hosts. Due to the excellent selective indexes of 18SAB075, this AIA was moved to in vivo tests for acute toxicity and parasite efficacy; nontoxic doses (no-observed-adverse-effect level [NOAEL], 50 mg/kg) were employed in the tests for parasite efficacy. In experimental models of acute T. cruzi infection, 18SAB075 reduced parasitemia levels only up to 50% and led to 40% protection against mortality (at 5 mg/kg of body weight), being less effective than the reference drug, benznidazole.


Asunto(s)
Amidinas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Amidinas/uso terapéutico , Amidinas/toxicidad , Animales , Supervivencia Celular , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Galactosidasas/metabolismo , Masculino , Ratones , Nitroimidazoles/farmacología , Nivel sin Efectos Adversos Observados , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Cultivo Primario de Células , Tripanocidas/uso terapéutico , Tripanocidas/toxicidad
6.
Bioorg Med Chem ; 22(1): 559-76, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24268543

RESUMEN

Fifty novel prodrugs and aza-analogues of 3,5-bis(4-amidinophenyl)isoxazole and its derivatives were prepared. Eighteen of the 24 aza-analogues exhibited IC50 values below 25 nM against Trypanosoma brucei rhodesiense or Plasmodium falciparum. Six compounds had antitrypanosomal IC50 values below 10 nM. Twelve analogues showed similar antiplasmodial activities, including three with sub-nanomolar potencies. Forty-four diamidines (including 16 aza-analogues) and the 26 prodrugs were evaluated for efficacy in mice infected with T. b. rhodesiense STIB900. Six diamidines cured 4/4 mice at daily 5 mg/kg intraperitoneal doses for 4 days, giving results far superior to pentamidine and furamidine. One prodrug attained 3/4 cures at daily 25 mg/kg oral doses for 4 days.


Asunto(s)
Antiprotozoarios/uso terapéutico , Isoxazoles/síntesis química , Plasmodium falciparum/efectos de los fármacos , Profármacos/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Antiprotozoarios/farmacología , Isoxazoles/química , Isoxazoles/farmacología , Ratones , Estructura Molecular , Relación Estructura-Actividad
7.
Drug Metab Dispos ; 41(2): 518-28, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23223498

RESUMEN

DB868 [2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan], a prodrug of the diamidine DB829 [2,5-bis(5-amidino-2-pyridyl) furan], has demonstrated efficacy in murine models of human African trypanosomiasis. A cross-species evaluation of prodrug bioconversion to the active drug is required to predict the disposition of prodrug, metabolites, and active drug in humans. The phase I biotransformation of DB868 was elucidated using liver microsomes and sandwich-cultured hepatocytes from humans and rats. All systems produced four NADPH-dependent metabolites via O-demethylation (M1, M2) and N-dehydroxylation (M3, M4). Compartmental kinetic modeling of the DB868 metabolic pathway suggested an unusual N-demethoxylation reaction that was supported experimentally. A unienzyme Michaelis-Menten model described the kinetics of M1 formation by human liver microsomes (HLMs) (K(m), 11 µM; V(max), 340 pmol/min/mg), whereas a two-enzyme model described the kinetics of M1 formation by rat liver microsomes (RLMs) (K(m1), 0.5 µM; V(max1), 12 pmol/min/mg; K(m2), 27 µM; V(max2), 70 pmol/min/mg). Human recombinant CYP1A2, CYP3A4, and CYP4F2, rat recombinant Cyp1a2 and Cyp2d2, and rat purified Cyp4f1 catalyzed M1 formation. M2 formation by HLMs exhibited allosteric kinetics (S(50), 18 µM; V(max), 180 pmol/mg), whereas M2 formation by RLMs was negligible. Recombinant CYP1A2/Cyp1a2 catalyzed M2 formation. DB829 was detected in trace amounts in HLMs at the end of the 180-min incubation and was detected readily in sandwich-cultured hepatocytes from both species throughout the 24-h incubation. These studies demonstrated that DB868 biotransformation to DB829 is conserved between humans and rats. An improved understanding of species differences in the kinetics of DB829 formation would facilitate preclinical development of a promising antitrypanosomal prodrug.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/enzimología , Modelos Biológicos , Profármacos/metabolismo , Profármacos/farmacología , Tripanocidas/metabolismo , Tripanocidas/farmacología , Animales , Biotransformación , Células Cultivadas , Remoción de Radical Alquila , Femenino , Hepatocitos/enzimología , Humanos , Hidroxilación , Isoenzimas , Cinética , Masculino , Metilación , Microsomas Hepáticos/enzimología , Estructura Molecular , Oxidación-Reducción , Profármacos/química , Ratas , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Tripanocidas/química
8.
J Am Chem Soc ; 134(11): 5290-9, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22369366

RESUMEN

Short AT base pair sequences that are separated by a small number of GCs are common in eukaryotic parasite genomes. Cell-permeable compounds that bind effectively and selectively to such sequences present an attractive therapeutic approach. Compounds with linked, one or two amidine-benzimidazole-phenyl (ABP) motifs were designed, synthesized, and evaluated for binding to adjacent AT sites by biosensor-surface plasmon resonance (SPR). A surprising feature of the linked ABP motifs is that a set of six similar compounds has three different minor groove binding modes with the target sequences. Compounds with one ABP bind independently to two separated AT sites. Unexpectedly, compounds with two ABP motifs can bind strongly either as monomers or as cooperative dimers to the full site. The results are supported by mass spectrometry and circular dichroism, and models to explain the different binding modes are presented.


Asunto(s)
Amidinas/química , Bencimidazoles/química , ADN/química , Amidinas/síntesis química , Emparejamiento Base , Bencimidazoles/síntesis química , Sitios de Unión , Técnicas Biosensibles , Modelos Moleculares , Estructura Molecular , Resonancia por Plasmón de Superficie
9.
Drug Metab Dispos ; 40(1): 6-17, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21953913

RESUMEN

Dose selection during antiparasitic drug development in animal models and humans traditionally has relied on correlations between plasma concentrations obtained at or below maximally tolerated doses that are efficacious. The objective of this study was to improve the understanding of the relationship between dose and plasma/tissue exposure of the model antiparasitic agent, pafuramidine, using a semiphysiologically based pharmacokinetic (semi-PBPK) modeling approach. Preclinical and clinical data generated during the development of pafuramidine, a prodrug of the active metabolite, furamidine, were used. A whole-body semi-PBPK model for rats was developed based on a whole-liver PBPK model using rat isolated perfused liver data. A whole-body semi-PBPK model for humans was developed on the basis of the whole-body rat model. Scaling factors were calculated using metabolic and transport clearance data generated from rat and human sandwich-cultured hepatocytes. Both whole-body models described pafuramidine and furamidine disposition in plasma and predicted furamidine tissue (liver and kidney) exposure and excretion profiles (biliary and renal). The whole-body models predicted that the intestine contributes significantly (30-40%) to presystemic furamidine formation in both rats and humans. The predicted terminal elimination half-life of furamidine in plasma was 3- to 4-fold longer than that of pafuramidine in rats (170 versus 47 h) and humans (64 versus 19 h). The dose-plasma/tissue exposure relationship for the prodrug/active metabolite pair was determined using the whole-body models. The human model proposed a dose regimen of pafuramidine (40 mg once daily) based on a predefined efficacy-safety index. A similar approach could be used to guide dose-ranging studies in humans for next-in-class compounds.


Asunto(s)
Antiparasitarios/farmacología , Antiparasitarios/farmacocinética , Modelos Biológicos , Profármacos/farmacología , Profármacos/farmacocinética , Animales , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
10.
Antimicrob Agents Chemother ; 55(7): 3439-45, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21537025

RESUMEN

Dicationic diamidines, such as diminazene and pentamidine, are well-studied chemotherapeutic agents with significant activity against parasitic diseases. The in vitro activities of novel diamidine compounds against the Babesia divergens strains 1903B and 4201 were investigated. The most potent compound, a diphenyl furan, had a 50% inhibitory concentration (IC(50)) of 1.5 ng/ml. In a murine model, several test compounds were effective enough to cure mice infected with Babesia microti at a dose of 12.5 and/or 25 mg/kg of body weight given by the subcutaneous route for 4 days. The best antibabesial properties were exhibited by terphenyls, benzimidazoles, diphenyl furans, pentamidine, and pentamidine analogues.


Asunto(s)
Antiprotozoarios/uso terapéutico , Babesia/efectos de los fármacos , Babesia/patogenicidad , Babesiosis/tratamiento farmacológico , Pentamidina/uso terapéutico , Animales , Babesia microti/efectos de los fármacos , Babesia microti/patogenicidad , Babesiosis/parasitología , Bencimidazoles/uso terapéutico , Femenino , Furanos/uso terapéutico , Ratones , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Compuestos de Terfenilo/uso terapéutico
11.
J Pharmacol Exp Ther ; 337(2): 503-12, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21320872

RESUMEN

Selection of in vitro models that accurately characterize metabolite systemic and hepatobiliary exposure remains a challenge in drug development. In the present study, mechanisms underlying differences in systemic exposure of two active metabolites, furamidine and 2,5-bis (5-amidino)-2-pyridyl furan (CPD-0801), were examined using two hepatic models from rats: isolated perfused livers (IPLs) and sandwich-cultured hepatocytes (SCH). Pafuramidine, a prodrug of furamidine, and 2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan (CPD-0868), a prodrug of CPD-0801, were selected for investigation because CPD-0801 exhibits greater systemic exposure than furamidine, despite remarkable structural similarity between these two active metabolites. In both IPLs and SCH, the extent of conversion of CPD-0868 to CPD-0801 was consistently higher than that of pafuramidine to furamidine over time (at most 2.5-fold); area under the curve (AUC) of CPD-0801 in IPL perfusate and SCH medium was at least 7-fold higher than that of furamidine. Pharmacokinetic modeling revealed that the rate constant for basolateral (liver to blood) net efflux (k(A_net efflux)) of total formed CPD-0801 (bound + unbound) was 6-fold higher than that of furamidine. Hepatic accumulation of both active metabolites was extensive (>95% of total formed); the hepatic unbound fraction (f(u,L)) of CPD-0801 was 5-fold higher than that of furamidine (1.6 versus 0.3%). Incorporation of f(u,L) into the pharmacokinetic model resulted in comparable k(A_net efflux,u) between furamidine and CPD-0801. In conclusion, intrahepatic binding markedly influenced the disposition of these active metabolites. A higher f(u,L) explained, in part, the enhanced perfusate AUC of CPD-0801 compared with furamidine in IPLs. SCH predicted the disposition of prodrug/metabolite in IPLs.


Asunto(s)
Amidinas/farmacología , Amidinas/farmacocinética , Benzamidinas/farmacología , Benzamidinas/farmacocinética , Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Bilis/metabolismo , Biotransformación , Supervivencia Celular/fisiología , Células Cultivadas , Cromatografía Líquida de Alta Presión , Interpretación Estadística de Datos , Hepatocitos/metabolismo , Masculino , Espectrometría de Masas , Modelos Biológicos , Farmacocinética , Profármacos , Ratas , Ratas Wistar
12.
Bioorg Med Chem ; 19(1): 513-23, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21112788

RESUMEN

Analogs of the trypanocidal lead compound 1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate were prepared to extend the structure-activity relationship in this series of molecules, improve the in vivo antitrypanosomal activity of the lead, and determine whether ester prodrugs are needed to overcome the instability of the dihydroquinolin-6-ols. Two of the most active compounds identified in this study were 1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride and 1-(2-methoxy)benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride. These stable solids possessed low nanomolar IC(50) values against Trypanosoma brucei rhodesiense STIB900 in vitro and provided cures in an early treatment acute mouse model of African trypanosomiasis when given ip at 50mg/kg/day for four consecutive days.


Asunto(s)
Quinolinas/síntesis química , Quinolinas/farmacología , Tripanocidas/síntesis química , Tripanocidas/farmacología , Animales , Ciclización , Ratones , Quinolinas/química , Sales (Química)/química , Relación Estructura-Actividad , Tripanocidas/química
13.
Antimicrob Agents Chemother ; 54(6): 2507-16, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20368397

RESUMEN

Arylimidamides (AIAs) represent a new class of molecules that exhibit potent antileishmanial activity (50% inhibitory concentration [IC(50)], <1 microM) against both Leishmania donovani axenic amastigotes and intracellular Leishmania, the causative agent for human visceral leishmaniasis (VL). A systematic lead discovery program was employed to characterize in vitro and in vivo antileishmanial activities, pharmacokinetics, mutagenicities, and toxicities of two novel AIAs, DB745 and DB766. They were exceptionally active (IC(50) < or = 0.12 microM) against intracellular L. donovani, Leishmania amazonensis, and Leishmania major and did not exhibit mutagenicity in an Ames screen. DB745 and DB766, given orally, produced a dose-dependent inhibition of liver parasitemia in two efficacy models, L. donovani-infected mice and hamsters. Most notably, DB766 (100 mg/kg of body weight/day for 5 days) reduced liver parasitemia in mice and hamsters by 71% and 89%, respectively. Marked reduction of parasitemia in the spleen (79%) and bone marrow (92%) of hamsters was also observed. Furthermore, these compounds distributed to target tissues (liver and spleen) and had a moderate oral bioavailability (up to 25%), a large volume of distribution, and an elimination half-life ranging from 1 to 2 days in mice. In a repeat-dose toxicity study of mice, there was no indication of liver or kidney toxicity for DB766 from serum chemistries, although mild hepatic cell eosinophilia, hypertrophy, and fatty changes were noted. These results demonstrated that arylimidamides are a promising class of molecules that possess good antileishmanial activity and desirable pharmacokinetics and should be considered for further preclinical development as an oral treatment for VL.


Asunto(s)
Amidinas/farmacología , Antiprotozoarios/farmacología , Furanos/farmacología , Leishmaniasis Visceral/tratamiento farmacológico , Amidinas/farmacocinética , Amidinas/toxicidad , Animales , Antiprotozoarios/farmacocinética , Antiprotozoarios/toxicidad , Disponibilidad Biológica , Cricetinae , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Femenino , Furanos/farmacocinética , Furanos/toxicidad , Humanos , Técnicas In Vitro , Leishmania donovani/efectos de los fármacos , Leishmania major/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/parasitología , Hígado/parasitología , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Microsomas Hepáticos/metabolismo , Pruebas de Mutagenicidad , Parasitemia/tratamiento farmacológico , Pruebas de Sensibilidad Parasitaria , Bazo/parasitología , Distribución Tisular
14.
J Antimicrob Chemother ; 65(3): 535-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20026611

RESUMEN

OBJECTIVES: To assess the impact of visceral leishmaniasis (VL) on the concentration of amphotericin B (AmB) recovered in the liver and spleen following either intravenous (AmBisome) or oral (iCo-009) AmB administration to mice. METHODS: Livers and spleens previously obtained from VL-infected BALB/c mice (following intravenous AmBisome or oral AmB treatments) were analysed for AmB concentrations. Then, non-infected BALB/c mice were divided into three treatment groups: a single dose of intravenous AmBisome (2 mg/kg, n = 5); and oral AmB every 12 h for 5 days (10 mg/kg, n = 6 and 20 mg/kg, n = 6). The animals were sacrificed 7 days after the initiation of the treatment and the livers and spleens were harvested for drug analysis by HPLC. RESULTS: The single intravenous injection of AmBisome resulted in a 77-fold lower concentration of AmB in infected compared with non-infected liver tissue, while the difference in AmB concentration in the spleen was only 5-fold. The multiple dose oral administration of AmB resulted in a 3-fold lower concentration of AmB in infected compared with non-infected livers for both oral doses, while the differences in AmB concentrations in the spleen were not statistically different for the oral treatment groups. CONCLUSIONS: VL significantly lowered the concentration of AmB in the liver and the spleen when compared with uninfected animals. This effect seems to correlate with the degree of infection of the tissue. In the case of the intravenous liposomal formulation (AmBisome), the differences between the infected and non-infected tissues are of a higher magnitude than in the case of orally administered AmB (iCo-009).


Asunto(s)
Anfotericina B/farmacocinética , Antiprotozoarios/farmacocinética , Leishmaniasis Visceral/tratamiento farmacológico , Hígado/química , Bazo/química , Administración Oral , Anfotericina B/administración & dosificación , Anfotericina B/análisis , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/análisis , Cromatografía Líquida de Alta Presión , Femenino , Inyecciones Intravenosas , Ratones , Ratones Endogámicos BALB C
15.
J Clin Lab Anal ; 24(3): 187-94, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20486201

RESUMEN

Human African trypanosomiasis (HAT), also called African sleeping sickness, is a neglected tropical parasitic disease indigenous to sub-Saharan Africa. Diamidine compounds, including pentamidine and CPD-0801, are potent anti-trypanosomal molecules. The latter is a potential drug in the development at the UNC based Consortium for Parasitic Drug Development. An orally bioavailable prodrug of CPD-0801, DB868, is metabolized primarily in the liver to the active form. A monoclonal antibody developed against a pentamidine derivative has shown significant reactivity with CPD-0801 (EC(50) 65.1 nM), but not with the prodrug (EC(50)>18,000 nM). An inhibitory enzyme-linked immunosorbent assay (IELISA) has been used to quantitatively monitor prodrug metabolism by detecting the production of the active compound over time in a sandwich culture rat hepatocyte system and in rats. These results were compared with the results of the standard LC/MS/MS assay. Spearman coefficients of 0.96 and 0.933 (in vitro and in vivo, respectively) indicate a high correlation between these two measurement methods. This novel IELISA provides a facile, inexpensive, and accurate method for drug detection that may aide in elucidating the mechanisms of action and toxicity of existing and future diamidine compounds.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Profármacos/metabolismo , Tripanocidas/análisis , Tripanocidas/metabolismo , Animales , Anticuerpos Monoclonales/biosíntesis , Especificidad de Anticuerpos/inmunología , Benzamidinas/inmunología , Reacciones Cruzadas/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Hepatocitos/metabolismo , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Pentamidina/análogos & derivados , Pentamidina/inmunología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Espectrometría de Masas en Tándem , Tripanocidas/sangre , Tripanocidas/inmunología , Tripanosomiasis Africana/tratamiento farmacológico
16.
Mem Inst Oswaldo Cruz ; 105(3): 239-45, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20512235

RESUMEN

Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease.


Asunto(s)
Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Concentración 50 Inhibidora , Ratones , Microscopía Fluorescente , Miocitos Cardíacos/parasitología , Pruebas de Sensibilidad Parasitaria , Factores de Tiempo
17.
Trop Med Infect Dis ; 5(1)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033395

RESUMEN

The work began with the screening of a library of 700,000 small molecules for inhibitors of Trypanosoma brucei growth (a phenotypic screen). The resulting set of 1035 hit compounds was reviewed by a team of medicinal chemists, leading to the nomination of 17 chemically distinct scaffolds for further investigation. The first triage step was the assessment for brain permeability (looking for brain levels at least 20% of plasma levels) in order to optimize the chances of developing candidates for treating late-stage human African trypanosomiasis. Eleven scaffolds subsequently underwent hit-to-lead optimization using standard medicinal chemistry approaches. Over a period of six years in an academic setting, 1539 analogs to the 11 scaffolds were synthesized. Eight scaffolds were discontinued either due to insufficient improvement in antiparasitic activity (5), poor pharmacokinetic properties (2), or a slow (static) antiparasitic activity (1). Three scaffolds were optimized to the point of curing the acute and/or chronic T. brucei infection model in mice. The progress was accomplished without knowledge of the mechanism of action (MOA) for the compounds, although the MOA has been discovered in the interim for one compound series. Studies on the safety and toxicity of the compounds are planned to help select candidates for potential clinical development. This research demonstrates the power of the phenotypic drug discovery approach for neglected tropical diseases.

18.
Elife ; 92020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32762841

RESUMEN

Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2's unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family.


African sleeping sickness is a potentially deadly illness caused by the parasite Trypanosoma brucei. The disease is treatable, but many of the current treatments are old and are becoming increasingly ineffective. For instance, resistance is growing against pentamidine, a drug used in the early stages in the disease, as well as against melarsoprol, which is deployed when the infection has progressed to the brain. Usually, cases resistant to pentamidine are also resistant to melarsoprol, but it is still unclear why, as the drugs are chemically unrelated. Studies have shown that changes in a water channel called aquaglyceroporin 2 (TbAQP2) contribute to drug resistance in African sleeping sickness; this suggests that it plays a role in allowing drugs to kill the parasite. This molecular 'drain pipe' extends through the surface of T. brucei, and should allow only water and a molecule called glycerol in and out of the cell. In particular, the channel should be too narrow to allow pentamidine or melarsoprol to pass through. One possibility is that, in T. brucei, the TbAQP2 channel is abnormally wide compared to other members of its family. Alternatively, pentamidine and melarsoprol may only bind to TbAQP2, and then 'hitch a ride' when the protein is taken into the parasite as part of the natural cycle of surface protein replacement. Alghamdi et al. aimed to tease out these hypotheses. Computer models of the structure of the protein were paired with engineered changes in the key areas of the channel to show that, in T. brucei, TbAQP2 provides a much broader gateway into the cell than observed for similar proteins. In addition, genetic analysis showed that this version of TbAQP2 has been actively selected for during the evolution process of T. brucei. This suggests that the parasite somehow benefits from this wider aquaglyceroporin variant. This is a new resistance mechanism, and it is possible that aquaglyceroporins are also larger than expected in other infectious microbes. The work by Alghamdi et al. therefore provides insight into how other germs may become resistant to drugs.


Asunto(s)
Acuaporina 2 , Pentamidina/farmacología , Trypanosoma brucei brucei , Animales , Acuaporina 2/química , Acuaporina 2/genética , Acuaporina 2/metabolismo , Acuaporinas/química , Acuaporinas/genética , Acuaporinas/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Melarsoprol/farmacología , Mutación , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico
19.
Biochemistry ; 48(7): 1573-83, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19173620

RESUMEN

Most A/T specific heterocyclic diamidine derivatives need at least four A/T base pairs for tight binding to the DNA minor groove. Addition of a GC base pair to A/T sequences typically causes a large decrease in binding constant. The ability to target biologically important sequences of DNA could be significantly increased if compounds that could recognize A/T sites with an intervening GC base pair could be designed. The kinetoplast DNA sequence of parasitic microorganisms, for example, contains numerous three A/T binding sites that are separated by a single G. A series of compounds were prepared to target the AAAGTTT sequence as a model system for discovery of "G-jumpers". The new synthetic compounds have two aromatic-amidine groups for A/T recognition, and these are connected through an oxy-methylene linker to cross the GC. CD experiments indicated a minor groove binding mode, as expected, for these compounds. T(max), surface plasmon resonance, and isothermal titration calorimetry experiments revealed 1:1 binding to the AAAGTTT sequence with an affinity that depends on compound structure. Benzimidazole derivatives gave the strongest binding and had generally good solution properties. The binding affinities to the classical AATT sequence were similar to that for AAAGTTT for these extended compounds, but binding was weaker to the AAAGCTTT sequence with two intervening GC base pairs. Binding to both AAAGTTT and AATT was enthalpy driven for strong binding benzimidazole derivatives.


Asunto(s)
Emparejamiento Base , Ácidos Nucleicos/metabolismo , Sitios de Unión , Calorimetría , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Resonancia por Plasmón de Superficie
20.
Antimicrob Agents Chemother ; 53(12): 5074-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19786604

RESUMEN

Surra is an animal pathogenic protozoan infection, caused by Trypanosoma evansi, that develops into a fatal wasting disease. Control measures rely on diagnosis and treatment. However, with the continuous emergence of drug resistance, this tactic is failing, and the pressing need for new chemotherapeutic agents is becoming critical. With the introduction of novel aromatic diamidines, a new category of antitrypanosomal drugs was discovered. Nevertheless, their efficacy within a T. evansi-infected mouse model was not known. In total, 30 compounds previously selected based on their in vitro activity were tested in a T. evansi mouse model of infection. Six of the compounds were capable of curing T. evansi-infected mice at drug doses as low as 0.5 and 0.25 mg/kg of body weight administered for 4 consecutive days, and they were more effective than the standard drugs suramin, diminazene, and quinapyramine. After all selection criteria were applied, three diamidine compounds (DB 75, DB 867, and DB 1192) qualified as lead compounds and were considered to have the potential to act as preclinical candidates against T. evansi infection.


Asunto(s)
Pentamidina/farmacología , Pentamidina/uso terapéutico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Trypanosoma/efectos de los fármacos , Trypanosoma/patogenicidad , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/parasitología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Pruebas de Sensibilidad Parasitaria , Pentamidina/administración & dosificación , Tripanocidas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA