Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Infect Immun ; 82(1): 275-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24166955

RESUMEN

Histological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model for Legionella pneumophila infection comprising living human lung tissue. We stimulated lung explants with L. pneumophila strains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion of L. pneumophila to the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA(-) strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context of L. pneumophila infections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations.


Asunto(s)
Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología , Pulmón/microbiología , Adhesinas Bacterianas/fisiología , Adhesión Bacteriana/fisiología , Regulación Bacteriana de la Expresión Génica , Humanos , Interferón gamma , Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/patología , Macrófagos Alveolares/microbiología , Modelos Biológicos , ARN Bacteriano/análisis , Transcriptoma
2.
Mol Microbiol ; 80(4): 935-50, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21392131

RESUMEN

Bacterial lipid homeostasis plays an important role for the adaptation to changing environments and under conditions of antimicrobial treatment. The tRNA-dependent aminoacylation of the phospholipid phosphatidylglycerol catalysed by aminoacyl-phosphatidylglycerol synthases was shown to render various organisms less susceptible to antibacterial agents. Therefore, this type of enzyme might provide a new target to potentiate the efficacy of existing antimicrobials. This study makes use of the Pseudomonas aeruginosa alanyl-phosphatidylglycerol synthase to identify the minimal core domain of this transmembrane protein, which is capable of alanyl-phosphatidylglycerol biosynthesis. Using this catalytic fragment we established a reliable activity assay that was used to study the enzymatic mechanism by analysing an overall of 33 mutant proteins in vitro. Substrate recognition was analysed by using aminoacylated microhelices as analogues of the natural tRNA substrate. The enzyme even tolerated mutated versions of this minimal substrate, which indicates that neither the intact tRNA, nor the individual sequence of the acceptor stem is a determinant for substrate recognition. Furthermore, the analysis of derivatives of phosphatidylglycerol indicated that the polar head group of the phospholipid is specifically recognized by the enzyme, whereas modification of an individual fatty acid or even the deletion of a single fatty acid did not abolish A-PG synthesis.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Metabolismo de los Lípidos , Pseudomonas aeruginosa/enzimología , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia/genética , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Membrana Celular/química , Membrana Celular/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Mutación , Fosfatidilgliceroles/metabolismo , Fosfolípidos/metabolismo , Reacción en Cadena de la Polimerasa , Pseudomonas aeruginosa/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA