RESUMEN
In sheep, coat colour (and pattern) is one of the important traits of great biological, economic and social importance. However, the genetics of sheep coat colour has not yet been fully clarified. We conducted a genome-wide association study of sheep coat colours by genotyping 47 303 single-nucleotide polymorphisms (SNPs) in the Finnsheep population in Finland. We identified 35 SNPs associated with all the coat colours studied, which cover genomic regions encompassing three known pigmentation genes (TYRP1, ASIP and MITF) in sheep. Eighteen of these associations were confirmed in further tests between white versus non-white individuals, but none of the 35 associations were significant in the analysis of only non-white colours. Across the tests, the s66432.1 in ASIP showed significant association (P=4.2 × 10(-11) for all the colours; P=2.3 × 10(-11) for white versus non-white colours) with the variation in coat colours and strong linkage disequilibrium with other significant variants surrounding the ASIP gene. The signals detected around the ASIP gene were explained by differences in white versus non-white alleles. Further, a genome scan for selection for white coat pigmentation identified a strong and striking selection signal spanning ASIP. Our study identified the main candidate gene for the coat colour variation between white and non-white as ASIP, an autosomal gene that has been directly implicated in the pathway regulating melanogenesis. Together with ASIP, the two other newly identified genes (TYRP1 and MITF) in the Finnsheep, bordering associated SNPs, represent a new resource for enriching sheep coat-colour genetics and breeding.
Asunto(s)
Proteína de Señalización Agouti/genética , Estudio de Asociación del Genoma Completo , Color del Cabello , Polimorfismo de Nucleótido Simple , Ovinos/genética , Animales , Femenino , Genética de Población , Desequilibrio de Ligamiento , Masculino , Fenotipo , Selección GenéticaRESUMEN
Multiple ovulation embryo transfer (MOET) is used to make more rapid progress in animal breeding schemes. On dairy farms, where female calves are more desired, embryo sex diagnosis is often performed before embryo transfer. Fresh transfers have been favored after biopsy due to cumulative drop in pregnancy rates following cryopreservation. The aim of this study was to explore whether exposure to ascorbic acid (AC) during biopsy and freezing increases the viability of biopsied embryos after cryopreservation. Data on presumptive pregnancy and calving rates of biopsied and cryopreserved/overnight-cultured embryos were gathered. Results showed differences in presumptive pregnancy rates between the groups: 45% for both biopsied-cryopreserved groups (control and AC), 51% for biopsied-overnight-cultured embryos and 80% for intact-fresh embryos. Differences between the groups were also apparent in calving rates: 22% for biopsied-cryopreserved control embryos, 31% for biopsied-cryopreserved AC-embryos, 23% for biopsied-overnight-cultured embryos and 63% for intact-fresh embryos. It is concluded that manipulated embryos are associated with lower presumptive pregnancy and calving rates compared with intact-fresh embryos. The highest calving rates for groups of manipulated embryos were achieved in the AC-group. Therefore, addition of AC can be recommended if biopsy is combined with freezing before transfer.