Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38857538

RESUMEN

The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.

2.
Plant J ; 118(1): 255-262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402589

RESUMEN

Precise genetic modification can be achieved via a sequence homology-mediated process known as gene targeting (GT). Whilst established for genome engineering purposes, the application of GT in plants still suffers from a low efficiency for which an explanation is currently lacking. Recently reported reduced rates of GT in A. thaliana deficient in polymerase theta (Polθ), a core component of theta-mediated end joining (TMEJ) of DNA breaks, have led to the suggestion of a direct involvement of this enzyme in the homology-directed process. Here, by monitoring homology-driven gene conversion in plants with CRISPR reagent and donor sequences pre-integrated at random sites in the genome (in planta GT), we demonstrate that Polθ action is not required for GT, but instead suppresses the process, likely by promoting the repair of the DNA break by end-joining. This finding indicates that lack of donor integration explains the previously established reduced GT rates seen upon transformation of Polθ-deficient plants. Our study additionally provides insight into ectopic gene targeting (EGT), recombination events between donor and target that do not map to the target locus. EGT, which occurs at similar frequencies as "true" GT during transformation, was rare in our in planta GT experiments arguing that EGT predominantly results from target locus recombination with nonintegrated T-DNA molecules. By describing mechanistic features of GT our study provides directions for the improvement of precise genetic modification of plants.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Marcación de Gen/métodos , Edición Génica , Plantas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Reparación del ADN por Unión de Extremidades/genética
3.
Bioessays ; 45(1): e2200168, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385254

RESUMEN

Small tandem DNA duplications in the range of 15 to 300 base-pairs play an important role in the aetiology of human disease and contribute to genome diversity. Here, we discuss different proposed mechanisms for their occurrence and argue that this type of structural variation mainly results from mutagenic repair of chromosomal breaks. This hypothesis is supported by both bioinformatical analysis of insertions occurring in the genome of different species and disease alleles, as well as by CRISPR/Cas9-based experimental data from different model systems. Recent work points to fill-in synthesis at double-stranded DNA breaks with complementary sequences, regulated by end-joining mechanisms, to account for small tandem duplications. We will review the prevalence of small tandem duplications in the population, and we will speculate on the potential sources of DNA damage that could give rise to this mutational signature. With the development of novel algorithms to analyse sequencing data, small tandem duplications are now more frequently detected in the human genome and identified as oncogenic gain-of-function mutations. Understanding their origin could lead to optimized treatment regimens to prevent therapy-induced activation of oncogenes and might expose novel vulnerabilities in cancer.


Asunto(s)
Rotura Cromosómica , Reparación del ADN por Unión de Extremidades , Genoma Humano , Repeticiones de Microsatélite , Humanos , Sistemas CRISPR-Cas
4.
Nucleic Acids Res ; 50(11): 6235-6250, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35670662

RESUMEN

The integrity and proper expression of genomes are safeguarded by DNA and RNA surveillance pathways. While many RNA surveillance factors have additional functions in the nucleus, little is known about the incidence and physiological impact of converging RNA and DNA signals. Here, using genetic screens and genome-wide analyses, we identified unforeseen SMG-1-dependent crosstalk between RNA surveillance and DNA repair in living animals. Defects in RNA processing, due to viable THO complex or PNN-1 mutations, induce a shift in DNA repair in dividing and non-dividing tissues. Loss of SMG-1, an ATM/ATR-like kinase central to RNA surveillance by nonsense-mediated decay (NMD), restores DNA repair and radio-resistance in THO-deficient animals. Mechanistically, we find SMG-1 and its downstream target SMG-2/UPF1, but not NMD per se, to suppress DNA repair by non-homologous end-joining in favour of single strand annealing. We postulate that moonlighting proteins create short-circuits in vivo, allowing aberrant RNA to redirect DNA repair.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Serina-Treonina Quinasas , ARN , Animales , ADN/genética , Estudio de Asociación del Genoma Completo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/genética , ARN Helicasas/genética
5.
Plant J ; 109(1): 112-125, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713516

RESUMEN

Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events. An additional complexity is that the product of recombination between T-DNA and target locus may not only map to the target locus (true GT), but also to random positions in the genome (ectopic GT). In this study, we have investigated how TMEJ functionality affects the biology of GT in plants, by using Arabidopsis thaliana mutated for the TEBICHI gene, which encodes for Polθ. Whereas in TMEJ-proficient plants we predominantly found GT events accompanied by random T-DNA integrations, GT events obtained in the teb mutant background lacked additional T-DNA copies, corroborating the essential role of Polθ in T-DNA integration. Polθ deficiency also prevented ectopic GT events, suggesting that the sequence of events leading up to this outcome requires TMEJ. Our findings provide insights that can be used for the development of strategies to obtain high-quality GT events in crop plants.


Asunto(s)
Arabidopsis/genética , ADN Polimerasa Dirigida por ADN/genética , Marcación de Gen , Agrobacterium tumefaciens/genética , ADN Bacteriano , ADN de Plantas/genética , Recombinación Homóloga , Plantas Modificadas Genéticamente , Transgenes
6.
PLoS Genet ; 16(4): e1008759, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32330130

RESUMEN

Bases within DNA are frequently damaged, producing obstacles to efficient and accurate DNA replication by replicative polymerases. Translesion synthesis (TLS) polymerases, via their ability to catalyze nucleotide additions to growing DNA chains across DNA lesions, promote replication of damaged DNA, thus preventing checkpoint activation, genome instability and cell death. In this study, we used C. elegans to determine the contribution of TLS activity on long-term stability of an animal genome. We monitored and compared the types of mutations that accumulate in REV1, REV3, POLH1 and POLK deficient animals that were grown under unchallenged conditions. We also addressed redundancies in TLS activity by combining all deficiencies. Remarkably, animals that are deficient for all Y-family polymerases as well as animals that have lost all TLS activity are viable and produce progeny, demonstrating that TLS is not essential for animal life. Whole genome sequencing analyses, however, reveal that TLS is needed to prevent genomic scars from accumulating. These scars, which are the product of polymerase theta-mediated end joining (TMEJ), are found overrepresented at guanine bases, consistent with TLS suppressing DNA double-strand breaks (DSBs) from occurring at replication-blocking guanine adducts. We found that in C. elegans, TLS across spontaneous damage is predominantly error free and anti-clastogenic, and thus ensures preservation of genetic information.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/genética , Inestabilidad Genómica , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación , Reproducción
7.
PLoS Genet ; 16(1): e1008550, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945059

RESUMEN

Extrachromosomal DNA can integrate into the genome with no sequence specificity producing an insertional mutation. This process, which is referred to as random integration (RI), requires a double stranded break (DSB) in the genome. Inducing DSBs by various means, including ionizing radiation, increases the frequency of integration. Here we report that non-lethal physiologically relevant doses of ionizing radiation (10-100 mGy), within the range produced by medical imaging equipment, stimulate RI of transfected and viral episomal DNA in human and mouse cells with an extremely high efficiency. Genetic analysis of the stimulated RI (S-RI) revealed that it is distinct from the background RI, requires histone H2AX S139 phosphorylation (γH2AX) and is not reduced by DNA polymerase θ (Polq) inactivation. S-RI efficiency was unaffected by the main DSB repair pathway (homologous recombination and non-homologous end joining) disruptions, but double deficiency in MDC1 and 53BP1 phenocopies γH2AX inactivation. The robust responsiveness of S-RI to physiological amounts of DSBs can be exploited for extremely sensitive, macroscopic and direct detection of DSB-induced mutations, and warrants further exploration in vivo to determine if the phenomenon has implications for radiation risk assessment.


Asunto(s)
Histonas/metabolismo , Mutagénesis Insercional/efectos de la radiación , Radiación Ionizante , Animales , Línea Celular , Células Cultivadas , Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Ratones , Reparación del ADN por Recombinación , ADN Polimerasa theta
8.
Trends Genet ; 35(9): 632-644, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31296341

RESUMEN

A recognized source of disease-causing genome alterations is erroneous repair of broken chromosomes, which can be executed by two distinct mechanisms: non-homologous end joining (NHEJ) and the recently discovered polymerase theta-mediated end joining (TMEJ) pathway. While TMEJ has previously been considered to act as an alternative mechanism backing up NHEJ, recent work points to a role for TMEJ in the repair of replication-associated DNA breaks that are excluded from repair through homologous recombination. Because of its mode of action, TMEJ is intrinsically mutagenic and sometimes leaves behind a recognizable genomic scar when joining chromosome break ends (i.e., 'templated insertions'). This review article focuses on the intriguing observation that this polymerase theta signature is frequently observed in disease alleles, arguing for a prominent role of this double-strand break repair pathway in genome diversification and disease-causing spontaneous mutagenesis in humans.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Evolución Molecular , Variación Genética , Humanos , Mutación , ADN Polimerasa theta
9.
EMBO J ; 36(24): 3634-3649, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29079701

RESUMEN

Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non-homologous end-joining (cNHEJ) is largely error-free, alternative end-joining pathways have been described that are intrinsically mutagenic. Which end-joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9-induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta-mediated end-joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end-joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double-strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ-dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Células Madre Embrionarias/fisiología , Animales , Sistemas CRISPR-Cas , Línea Celular , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Células Madre Embrionarias/citología , Hipoxantina Fosforribosiltransferasa , Ratones , Modelos Genéticos , Mutación , ADN Polimerasa theta
10.
PLoS Genet ; 12(10): e1006368, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755535

RESUMEN

For more than half a century, genotoxic agents have been used to induce mutations in the genome of model organisms to establish genotype-phenotype relationships. While inaccurate replication across damaged bases can explain the formation of single nucleotide variants, it remained unknown how DNA damage induces more severe genomic alterations. Here, we demonstrate for two of the most widely used mutagens, i.e. ethyl methanesulfonate (EMS) and photo-activated trimethylpsoralen (UV/TMP), that deletion mutagenesis is the result of polymerase Theta (POLQ)-mediated end joining (TMEJ) of double strand breaks (DSBs). This discovery allowed us to survey many thousands of available C. elegans deletion alleles to address the biology of this alternative end-joining repair mechanism. Analysis of ~7,000 deletion breakpoints and their cognate junctions reveals a distinct order of events. We found that nascent strands blocked at sites of DNA damage can engage in one or more cycles of primer extension using a more downstream located break end as a template. Resolution is accomplished when 3' overhangs have matching ends. Our study provides a step-wise and versatile model for the in vivo mechanism of POLQ action, which explains the molecular nature of mutagen-induced deletion alleles.


Asunto(s)
Caenorhabditis elegans/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/genética , Animales , Caenorhabditis elegans/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/biosíntesis , Metanosulfonato de Etilo/toxicidad , Estudios de Asociación Genética , Genoma/efectos de los fármacos , Mutagénesis , Mutágenos/toxicidad , Eliminación de Secuencia/efectos de los fármacos , ADN Polimerasa theta
11.
EMBO J ; 33(21): 2521-33, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25193968

RESUMEN

Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using ssDNA templates and Xenopus egg extracts that recapitulates eukaryotic G4 replication. Here, we show that G-quadruplex structures form a barrier for DNA replication. Nascent strand synthesis is blocked at one or two nucleotides from the G4. After transient stalling, G-quadruplexes are efficiently unwound and replicated. In contrast, depletion of the FANCJ/BRIP1 helicase causes persistent replication stalling at G-quadruplex structures, demonstrating a vital role for this helicase in resolving these structures. FANCJ performs this function independently of the classical Fanconi anemia pathway. These data provide evidence that the G4 sequence instability in FANCJ(-/-) cells and Fancj/dog1 deficient C. elegans is caused by replication stalling at G-quadruplexes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , ADN/biosíntesis , G-Cuádruplex , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ADN Helicasas/genética , Eliminación de Gen , Humanos , Xenopus laevis
12.
Genome Res ; 24(6): 954-62, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24614976

RESUMEN

DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Genoma de los Helmintos , Variación Estructural del Genoma , ADN Polimerasa theta
13.
PLoS Genet ; 9(2): e1003276, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408909

RESUMEN

Successful completion of meiosis requires the induction and faithful repair of DNA double-strand breaks (DSBs). DSBs can be repaired via homologous recombination (HR) or non-homologous end joining (NHEJ), yet only repair via HR can generate the interhomolog crossovers (COs) needed for meiotic chromosome segregation. Here we identify COM-1, the homolog of CtIP/Sae2/Ctp1, as a crucial regulator of DSB repair pathway choice during Caenorhabditis elegans gametogenesis. COM-1-deficient germ cells repair meiotic DSBs via the error-prone pathway NHEJ, resulting in a lack of COs, extensive chromosomal aggregation, and near-complete embryonic lethality. In contrast to its yeast counterparts, COM-1 is not required for Spo11 removal and initiation of meiotic DSB repair, but instead promotes meiotic recombination by counteracting the NHEJ complex Ku. In fact, animals defective for both COM-1 and Ku are viable and proficient in CO formation. Further genetic dissection revealed that COM-1 acts parallel to the nuclease EXO-1 to promote interhomolog HR at early pachytene stage of meiotic prophase and thereby safeguards timely CO formation. Both of these nucleases, however, are dispensable for RAD-51 recruitment at late pachytene stage, when homolog-independent repair pathways predominate, suggesting further redundancy and/or temporal regulation of DNA end resection during meiotic prophase. Collectively, our results uncover the potentially lethal properties of NHEJ during meiosis and identify a critical role for COM-1 in NHEJ inhibition and CO assurance in germ cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Recombinación Homóloga/genética , Meiosis/genética , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica/genética , Intercambio Genético , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Células Germinativas/metabolismo , Autoantígeno Ku , Fase Paquiteno/genética
14.
PLoS Genet ; 9(3): e1003339, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505385

RESUMEN

Malignant brain tumour (MBT) domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR) for the repair of DNA double-strand breaks (DSBs). lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Transformación Celular Neoplásica , Proteínas Cromosómicas no Histona , Reparación del ADN , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/efectos de la radiación , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Inestabilidad Genómica/genética , Células Germinativas/metabolismo , Recombinación Homóloga/genética , Recombinación Homóloga/efectos de la radiación , Humanos , Mutación , Tolerancia a Radiación/genética , Radiación Ionizante , Rayos Ultravioleta
15.
Exp Cell Res ; 329(1): 178-83, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25193076

RESUMEN

G4 DNA motifs, which can form stable secondary structures called G-quadruplexes, are ubiquitous in eukaryotic genomes, and have been shown to cause genomic instability. Specialized helicases that unwind G-quadruplexes in vitro have been identified, and they have been shown to prevent genetic instability in vivo. In the absence of these helicases, G-quadruplexes can persist and cause replication fork stalling and collapse. Translesion synthesis (TLS) and homologous recombination (HR) have been proposed to play a role in the repair of this damage, but recently it was found in the nematode Caenorhabditis elegans that G4-induced genome alterations are generated by an error-prone repair mechanism that is dependent on the A-family polymerase Theta (Pol θ). Current data point towards a scenario where DNA replication blocked at G-quadruplexes causes DNA double strand breaks (DSBs), and where the choice of repair pathway that can act on these breaks dictates the nature of genomic alterations that are observed in various organisms.


Asunto(s)
Caenorhabditis elegans/genética , Daño del ADN/genética , Reparación del ADN/genética , G-Cuádruplex , Inestabilidad Genómica , Animales , Replicación del ADN
16.
Nucleic Acids Res ; 41(16): e158, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23861444

RESUMEN

Here, we report the investigation of microsatellite instability (MSI) in human cells with a newly developed reporter system based on fluorescence. We composed a vector into which microsatellites of different lengths and nucleotide composition can be introduced between a functional copy of the fluorescent protein mCherry and an out-of-frame copy of EGFP; in vivo frameshifting will lead to EGFP expression, which can be quantified by fluorescence activated cell sorting (FACS). Via targeted recombineering, single copy reporters were introduced in HEK293 and MCF-7 cells. We found predominantly -1 and +1 base pair frameshifts, the levels of which are kept in tune by mismatch repair. We show that tract length and composition greatly influences MSI. In contrast, a tracts' potential to form a G-quadruplex structure, its strand orientation or its transcriptional status is not affecting MSI. We further validated the functionality of the reporter system for screening microsatellite mutagenicity of compounds and for identifying modifiers of MSI: using a retroviral miRNA expression library, we identified miR-21, which targets MSH2, as a miRNA that induces MSI when overexpressed. Our data also provide proof of principle for the strategy of combining fluorescent reporters with next-generation sequencing technology to identify genetic factors in specific pathways.


Asunto(s)
Genes Reporteros , Inestabilidad de Microsatélites , Línea Celular , Separación Celular , Citometría de Flujo , Colorantes Fluorescentes , G-Cuádruplex , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , MicroARNs/metabolismo , Transcripción Genética , Proteína Fluorescente Roja
17.
PLoS Genet ; 8(6): e1002800, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22761594

RESUMEN

Translesion synthesis (TLS) polymerases are specialized DNA polymerases capable of inserting nucleotides opposite DNA lesions that escape removal by dedicated DNA repair pathways. TLS polymerases allow cells to complete DNA replication in the presence of damage, thereby preventing checkpoint activation, genome instability, and cell death. Here, we characterize functional knockouts for polh-1 and polk-1, encoding the Caenorhabditis elegans homologs of the Y-family TLS polymerases η and κ. POLH-1 acts at many different DNA lesions as it protects cells against a wide range of DNA damaging agents, including UV, γ-irradiation, cisplatin, and methyl methane sulphonate (MMS). POLK-1 acts specifically but redundantly with POLH-1 in protection against methylation damage. Importantly, both polymerases play a prominent role early in embryonic development to allow fast replication of damaged genomes. Contrary to observations in mammalian cells, we show that neither POLH-1 nor POLK-1 is required for homologous recombination (HR) repair of DNA double-strand breaks. A genome-wide RNAi screen for genes that protect the C. elegans genome against MMS-induced DNA damage identified novel components in DNA damage bypass in the early embryo. Our data suggest SUMO-mediated regulation of both POLH-1 and POLK-1, and point towards a previously unrecognized role of the nuclear pore in regulating TLS.


Asunto(s)
Caenorhabditis elegans , Daño del ADN , Reparación del ADN/genética , ADN Polimerasa Dirigida por ADN , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Daño del ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desarrollo Embrionario/genética , Rayos gamma , Técnicas de Inactivación de Genes , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Recombinación Homóloga/efectos de la radiación , Metilmetanosulfonato/farmacología , Poro Nuclear/genética , Porinas/genética , Porinas/metabolismo , Protectores contra Radiación/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/genética , Rayos Ultravioleta
18.
PNAS Nexus ; 3(3): pgae094, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463035

RESUMEN

A practical and powerful approach for genome editing in plants is delivery of CRISPR reagents via Agrobacterium tumefaciens transformation. The double-strand break (DSB)-inducing enzyme is expressed from a transferred segment of bacterial DNA, the T-DNA, which upon transformation integrates at random locations into the host genome or is captured at the self-inflicted DSB site. To develop efficient strategies for precise genome editing, it is thus important to define the mechanisms that repair CRISPR-induced DSBs, as well as those that govern random and targeted integration of T-DNA. In this study, we present a detailed and comprehensive genetic analysis of Cas9-induced DSB repair and T-DNA capture in the model plant Arabidopsis thaliana. We found that classical nonhomologous end joining (cNHEJ) and polymerase theta-mediated end joining (TMEJ) are both, and in part redundantly, acting on CRISPR-induced DSBs to produce very different mutational outcomes. We used newly developed CISGUIDE technology to establish that 8% of mutant alleles have captured T-DNA at the induced break site. In addition, we find T-DNA shards within genomic DSB repair sites indicative of frequent temporary interactions during TMEJ. Analysis of thousands of plant genome-T-DNA junctions, followed up by genetic dissection, further reveals that TMEJ is responsible for attaching the 3' end of T-DNA to a CRISPR-induced DSB, while the 5' end can be attached via TMEJ as well as cNHEJ. By identifying the mechanisms that act to connect recombinogenic ends of DNA molecules at chromosomal breaks, and quantifying their contributions, our study supports the development of tailor-made strategies toward predictable engineering of crop plants.

19.
Cell Rep ; 42(2): 112019, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36701230

RESUMEN

Gene editing through repair of CRISPR-Cas9-induced chromosomal breaks offers a means to correct a wide range of genetic defects. Directing repair to produce desirable outcomes by modulating DNA repair pathways holds considerable promise to increase the efficiency of genome engineering. Here, we show that inhibition of non-homologous end joining (NHEJ) or polymerase theta-mediated end joining (TMEJ) can be exploited to alter the mutational outcomes of CRISPR-Cas9. We show robust inhibition of TMEJ activity at CRISPR-Cas9-induced double-strand breaks (DSBs) using ART558, a potent polymerase theta (PolÏ´) inhibitor. Using targeted sequencing, we show that ART558 suppresses the formation of microhomology-driven deletions in favor of NHEJ-specific outcomes. Conversely, NHEJ deficiency triggers the formation of large kb-sized deletions, which we show are the products of mutagenic TMEJ. Finally, we show that combined chemical inhibition of TMEJ and NHEJ increases the efficiency of homology-driven repair (HDR)-mediated precise gene editing. Our work reports a robust strategy to improve the fidelity and safety of genome engineering.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Mutación/genética , Reparación del ADN por Unión de Extremidades
20.
Nat Commun ; 14(1): 8410, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110404

RESUMEN

G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.


Asunto(s)
Caenorhabditis elegans , Neuropéptidos , Animales , Caenorhabditis elegans/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Neuropéptidos/genética , Células Quimiorreceptoras , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA