Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 430-436, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38134360

RESUMEN

Macrocyclic host molecules bound to electrode surfaces enable the complexation of catalytically active guests for molecular heterogeneous catalysis. We present a surface-anchored host-guest complex with the ability to electrochemically oxidize ammonia in both organic and aqueous solutions. With an adamantyl motif as the binding group on the backbone of the molecular catalyst [Ru(bpy-NMe2)(tpada)(Cl)](PF6) (1) (where bpy-NMe2 is 4,4'-bis(dimethylamino)-2,2'-bipyridyl and tpada is 4'-(adamantan-1-yl)-2,2':6',2″-terpyridine), high binding constants with ß-cyclodextrin were observed in solution (in DMSO-d6:D2O (7:3), K11 = 492 ± 21 M-1). The strong binding affinities were also transferred to a mesoporous ITO (mITO) surface functionalized with a phosphonated derivative of ß-cyclodextrin. The newly designed catalyst (1) was compared to the previously reported naphthyl-substituted catalyst [Ru(bpy-NMe2)(tpnp)(Cl)](PF6) (2) (where tpnp is 4'-(naphthalene-2-yl)-2,2':6',2″-terpyridine) for its stability during catalysis. Despite the insulating nature of the adamantyl substituent serving as the binding group, the stronger binding of this unit to the host-functionalized electrode and the resulting shorter distance between the catalytic active center and the surface led to better performance and higher stability. Both guests are able to oxidize ammonia in both organic and aqueous solutions, and the host-anchored electrode can be refunctionalized multiple times (>3) following the loss of the catalytic activity, without a reduction in performance. Guest 1 exhibits significantly higher stability in comparison to guest 2 toward basic conditions, which often constitutes a challenge for anchored molecular systems. Ammonia oxidation in water led to the selective formation of NO3- with Faradaic efficiencies of up to 100%.

2.
Chemistry ; 30(19): e202304181, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38285807

RESUMEN

Abundantly available biomass-based platform chemicals, including 5-hydroxymethylfurfural (HMF), are essential stepping stones in steering the chemical industry away from fossil fuels. The efficient catalytic oxidation of HMF to its diacid derivative, 2,5-furandicarboxylic acid (FDCA), is a promising research area with potential applications in the polymer industry. Currently, the most encouraging approaches are based on solid-state catalysts and are often conducted in basic aqueous media, conditions where HMF oxidation competes with its decomposition. Efficient molecular catalysts are practically unknown for this reaction. In this study, we report on the synthesis and electrocatalysis of surface-bound molecular ruthenium complexes for the transformation of HMF to FDCA under acidic conditions. Catalyst immobilisation on mesoporous indium tin oxide electrodes is achieved through the incorporation of phosphonic acid anchoring groups. Screening experiments with HMF and further reaction intermediates revealed the catalytic route and bottlenecks in the catalytic synthesis of FDCA. Utilising these immobilised electrocatalysts, FDCA yields of up to 85 % and faradaic efficiencies of 91 % were achieved, without any indication of substrate decomposition. Surface analysis by X-ray photoelectron spectroscopy (XPS) post-electrocatalysis unveiled the desorption of the catalyst from the electrode surface as a limiting factor in terms of catalytic performance.

3.
ACS Catal ; 14(13): 9877-9886, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38988656

RESUMEN

Antimony selenide (Sb2Se3) has recently been intensively investigated and has achieved significant advancement in photoelectrochemical (PEC) water splitting. In this work, a facile one-step hydrothermal method for the preparation of Sn-doped Sb2Se3 photocathodes with improved PEC performance was investigated. We present an in-depth study of the performance enhancement in Sn-doped Sb2Se3 photocathodes using capacitance-voltage (CV), drive-level capacitance profiling (DLCP), and electrochemical impedance spectroscopy (EIS) techniques. The incorporation of Sn2+ into the Sb2Se3 results in increased carrier density, reduced surface defects, and improved charge separation, thereby leading to improved PEC performance. With a thin Sb2Se3 absorber layer (270 nm thickness), the Sn-doped Sb2Se3 photocathode exhibits an improved photocurrent density of 17.1 mA cm-2 at 0 V versus RHE (V RHE) compared to that of the undoped Sb2Se3 photocathode (14.4 mA cm-2). This work not only highlights the positive influence of Sn doping on Sb2Se3 photocathodes but also showcases a one-step method to synthesize doped Sb2Se3 with improved optoelectronic properties.

4.
ACS Energy Lett ; 9(8): 3828-3834, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39144809

RESUMEN

Molybdenum sulfide serves as an effective nonprecious metal catalyst for hydrogen evolution, primarily active at edge sites with unsaturated molybdenum sites or terminal disulfides. To improve the activity at a low loading density, two molybdenum sulfide clusters, [Mo3S4]4+ and [Mo3S13]2-, were investigated. The Mo3S x molecular catalysts were heterogenized on Sb2Se3 with a simple soaking treatment, resulting in a thin catalyst layer of only a few nanometers that gave up to 20 mA cm-2 under one sun illumination. Both [Mo3S4]4+ and [Mo3S13]2- exhibit catalytic activities on Sb2Se3, with [Mo3S13]2- emerging as the superior catalyst, demonstrating enhanced photovoltage and an average faradaic efficiency of 100% for hydrogen evolution. This superiority is attributed to the effective loading and higher catalytic activity of [Mo3S13]2- on the Sb2Se3 surface, validated by X-ray photoelectron and Raman spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA