Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 270: 115897, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176182

RESUMEN

Atlantic salmon (Salmo salar) might encounter toxic hydrogen sulphide (H2S) gas during aquaculture production. Exposure to this gas can be acute or chronic, with heightened levels often linked to significant mortality rates. Despite its recognised toxicity, our understanding of the physiological implications of H2S on salmon remains limited. This report details the mucosal and systemic physiological consequences in post-smolt salmon reared in brackish water at 12 ppt after prolonged exposure to elevated H2S levels over 4 weeks. The fish were subjected to two concentrations of H2S: 1 µg/L (low group) and 5 µg/L (high group). An unexposed group at 0 µg/L served as the control. Both groups exposed to H2S exhibited incremental mortality, with cumulative mortality rates of 4.7 % and 16 % for the low and high groups, respectively. Production performance, including weight and condition factors, were reduced in the H2S-exposed groups, particularly in the high group. Mucosal response of the olfactory organ revealed higher tissue damage scores in the H2S-exposed groups, albeit only at week 4. The high group displayed pronounced features such as increased mucus cell density and oedema-like vacuoles. Transcriptome analysis of the olfactory organ unveiled that the effects of H2S were more prominent at week 4, with the high group experiencing a greater magnitude of change than the low group. Genes associated with the extracellular matrix were predominantly downregulated, while the upregulated genes primarily pertained to immune response. H2S-induced alterations in the metabolome were more substantial in plasma than skin mucus. Furthermore, the number of differentially affected circulating metabolites was higher in the low group compared to the high group. Five core pathways were significantly impacted by H2S regardless of concentration, including the phenylalanine, tyrosine, and tryptophan biosynthesis. The plasma levels of phenylalanine and tyrosine were reduced following exposure to H2S. While there was a discernible distinction in the skin mucus metabolomes among the three treatment groups, only one metabolite - 4-hydroxyproline - was significantly impacted by H2S. Furthermore, this metabolite was significantly reduced in the plasma and skin mucus of H2S-exposed fish. This study underscores that prolonged exposure to H2S, even at concentrations previously deemed sub-lethal, has discernible physiological implications that manifest across various organisational levels. Given these findings, prolonged exposure to H2S poses a welfare risk, and thus, its presence must be maintained at low levels (<1 µg/L) in salmon land-based rearing systems.


Asunto(s)
Sulfuro de Hidrógeno , Salmo salar , Animales , Acuicultura , Fenilalanina , Tirosina
2.
Fish Shellfish Immunol ; 130: 612-623, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36150413

RESUMEN

The present study investigated the involvement of key molecular regulators of oxidative stress in amoebic gill disease (AGD), a parasitic infestation in Atlantic salmon. In addition, the study evaluated how these molecular biomarkers responded when AGD-affected fish were exposed to a candidate chemotherapeutic peracetic acid (PAA). Atlantic salmon were experimentally infected with the parasite Neoparameoba perurans, the causative agent of AGD, by bath exposure and after 2 weeks, the fish were treated with three commercial PAA products (i.e., Perfectoxid, AquaDes and ADDIAqua) at a dose of 5 ppm. Two exposure durations were evaluated - 30 min and 60 min. Sampling was performed 24 h and 2 weeks after PAA treatment (equivalent to 2- and 4-weeks post infection). At each sampling point, the following parameters were evaluated: gross gill pathology, gill parasitic load, plasma reactive oxygen species (ROS) and total antioxidant capacity (TAC), histopathology and gene expression profiling of genes with key involvement in oxidative stress in the gills and olfactory organ. AGD did not result in systemic oxidative stress as ROS and TAC levels remained unchanged. There were no clear patterns of AGD-mediated regulation of the oxidative stress biomarkers in both the gills and olfactory organ; significant changes in the expression were mostly related to time rather than infection status. However, the expression profiles of the oxidative stress biomarkers in AGD-affected salmon, following treatment with PAA, revealed that gills and olfactory organ responded differently - upregulation was prominent in the gills while downregulation was more frequent in the olfactory organ. The expression of catalase, glutathione S-transferase and thioredoxin reductase 2 was significantly affected by the treatments, both in the gills and olfactory organ, and these alterations were influenced by the duration of exposure and PAA product type. Parasitic load in the gills did significantly increase after treatment regardless of the product and exposure duration; the parasite was undetectable in some fish treated with AquaDes for 30 mins. However, PAA treated groups for 30 min showed lower macroscopic gill scores than the infected-untreated fish. Histology disclosed the classic pathological findings such as multifocal hyperplasia and increased number of mucous cells in AGD-affected fish. Microscopic scoring of gill injuries showed that AGD-infected-PAA-treated fish had lower scores, however, an overall trend could not be established. The morphology and structural integrity of the olfactory organ were not significantly altered by parasitism or PAA treatment. Collectively, the results indicate that AGD did not affect the systemic and mucosal oxidative status of Atlantic salmon. However, such a striking profile was changed when AGD-affected fish were exposed to oxidative chemotherapeutics. Moreover, the gills and olfactory organ demonstrated distinct patterns of gene expression of oxidative stress biomarkers in AGD-infected-PAA-treated fish. Lastly, PAA treatment did not fully resolve the infection, but appeared not to worsen the mucosal health either.


Asunto(s)
Amebiasis , Enfermedades de los Peces , Parásitos , Salmo salar , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología , Amebiasis/veterinaria , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalasa/metabolismo , Enfermedades de los Peces/genética , Branquias/metabolismo , Glutatión Transferasa/metabolismo , Estrés Oxidativo , Ácido Peracético , Especies Reactivas de Oxígeno/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Tiorredoxina Reductasa 2/metabolismo
3.
BMC Genomics ; 18(1): 971, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29246115

RESUMEN

BACKGROUND: Farmed and wild Atlantic salmon are exposed to many infectious and non-infectious challenges that can cause mortality when they enter the sea. Exercise before transfer promotes growth, health and survival in the sea. Swimming performance in juveniles at the freshwater parr stage is positively associated with resistance to some diseases. Genetic variation is likely to affect response to exercise. In this study we map genetic differences associated with aerobic exercise, swimming performance and genetic origin. Eggs from the selectively bred Bolaks salmon and wild Lærdal River salmon strains were reared until parr in a common environment. Swimming performance was assessed by subjecting the fish to either continuous hard exercise or control conditions for 18 days. Heart was sampled for examination of gene expression using RNA-seq (~60 fish/treatment). RESULTS: Lower expression of genes affecting immune function was found in domesticated than wild parr. Among wild parr under control exercise the expression of a large number of genes involved in general metabolism, stress and immune response was lower in superior swimmers suggesting that minimisation of energy expenditure during periods of low activity makes parr better able to sustain bursts of swimming for predator avoidance. A similar set of genes were down-regulated with training among wild parr with inferior swimming performance. These parr react to training in a way that their cardiac expression patterns become like the superior performing wild parr under control exercise conditions. Diversifying selection caused by breeding of domesticated stock, and adaptive pressures in wild stock, has affected the expression and frequency of single nucleotide polymorphisms (SNPs) for multiple functional groups of genes affecting diverse processes. SNPs associated with swimming performance in wild parr map to genes involved in energetic processes, coding for contractile filaments in the muscle and controlling cell proliferation. CONCLUSIONS: Domesticated parr have less phenotypic plasticity in response to training and lower expression of genes with functions affecting immune response. The genetic response to training is complex and depends on the background of parr and their swimming ability. Exercise should be tailored to the genetics and swimming performance of fish.


Asunto(s)
Condicionamiento Físico Animal , Salmo salar/genética , Natación , Transcriptoma , Animales , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple , Salmo salar/metabolismo , Análisis de Secuencia de ARN
4.
Mol Reprod Dev ; 84(11): 1191-1202, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28856812

RESUMEN

Egg yolk proteins are mainly derived from vitellogenin (Vtg), and serve as essential nutrients during early development in oviparous organisms. Vertebrate Vtgs are predominantly synthesized in the liver of maturing females, and are internalized by the oocyte after binding to specific surface receptors (VtgR). Here, we clarify the evolutionary history of vertebrate Vtgs, including the teleost VtgC, which lacks phosvitin, and investigate the repertoire of Vtgs and VtgRs in the tetraploid Atlantic salmon (Salmo salar). Conserved synteny of the vtg genes in elephant fish (Callorhinchus milii) strongly indicates that the vtg gene cluster was present in the ancestor of tetrapods and ray-finned fish. The shortened phosvitin in the VtgC ortholog of this chondrichthyean fish may have resulted from early truncation events that eventually allowed the total disappearance of phosvitin in teleost VtgC. In contrast, the tandem-duplicated VtgCs identified in the spotted gar (Lepisosteus oculatus) both contain the phosvitin domain. The Atlantic salmon genome harbors four vtg genes encoding the complete VtgAsa1, phosvitin-less VtgC, and truncated VtgAsb proteins; vtgAsa2 is a pseudogene. The three vtg genes were mainly expressed in the liver of maturing females, and the vtgAsa1 transcript predominated prior to spawning. The splice variant lacking the O-linked sugar domain dominated ovarian expression of vtgr1 and vtgr2. Strongly increased vtgAsa1 expression during vitellogenesis contrasted with the peaks of vtgr1 and vtgr2 in the previtellogenic oocytes, which gradually decreased over the same period. Recycling of the oocyte VtgRs is probably not sufficient to maintain receptor number during vitellogenesis.


Asunto(s)
Proteínas del Huevo , Proteínas de Peces , Oocitos/metabolismo , Receptores de Superficie Celular , Salmo salar , Tetraploidía , Vitelogénesis/fisiología , Vitelogeninas , Animales , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Oocitos/citología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo
5.
Vet Res ; 47(1): 107, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769313

RESUMEN

Viral diseases are among the main challenges in farming of Atlantic salmon (Salmo salar). The most prevalent viral diseases in Norwegian salmon aquaculture are heart and skeletal muscle inflammation (HSMI) caused by Piscine orthoreovirus (PRV), and pancreas disease (PD) caused by Salmonid alphavirus (SAV). Both PRV and SAV target heart and skeletal muscles, but SAV additionally targets exocrine pancreas. PRV and SAV are often present in the same locations and co-infections occur, but the effect of this crosstalk on disease development has not been investigated. In the present experiment, the effect of a primary PRV infection on subsequent SAV infection was studied. Atlantic salmon were infected with PRV by cohabitation, followed by addition of SAV shedder fish 4 or 10 weeks after the initial PRV infection. Histopathological evaluation, monitoring of viral RNA levels and host gene expression analysis were used to assess disease development. Significant reduction of SAV RNA levels and of PD specific histopathological changes were observed in the co-infected groups compared to fish infected by SAV only. A strong correlation was found between histopathological development and expression of disease related genes in heart. In conclusion, experimentally PRV infected salmon are less susceptible to secondary SAV infection and development of PD.


Asunto(s)
Enfermedades de los Peces/virología , Orthoreovirus , Enfermedades Pancreáticas/veterinaria , Infecciones por Reoviridae/veterinaria , Salmo salar/virología , Alphavirus , Infecciones por Alphavirus/complicaciones , Infecciones por Alphavirus/patología , Infecciones por Alphavirus/veterinaria , Infecciones por Alphavirus/virología , Animales , Enfermedades de los Peces/patología , Enfermedades Pancreáticas/etiología , Enfermedades Pancreáticas/patología , Enfermedades Pancreáticas/virología , Infecciones por Reoviridae/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria
6.
Fish Shellfish Immunol ; 58: 33-41, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27637733

RESUMEN

Smoltification and seawater adaptation of Atlantic salmon are associated with profound alterations in the endocrine status, osmoregulation and behaviour. Little is known about immunological changes during smoltification, although increased incidences of infectious diseases after seawater transfer (SWT) may indicate weakened protection. We report microarray gene expression analyses in farmed Atlantic salmon during smoltification stimulated with constant light and early seawater adaptation (one and three weeks after SWT). Gene expression changes were large, their magnitude in the head kidney and proximal intestine was greater than in the gill. Among 360 differentially expressed immune genes, 300 genes were down-regulated, and multiple functional groups were affected such as innate antiviral immunity, chemokines, cytokines and receptors, signal transducers, effectors of humoral and cellular innate immunity, antigen presentation and lymphocytes, especially T cells. No recovery was observed after three weeks in seawater. A notable exception was a transient up-regulation of immunoglobulin transcripts in the gill after SWT. Genes involved in stress responses and xenobiotic metabolism were up-regulated in respectively intestine and gill. The duration of this observed immune suppression and the possible consequences for susceptibility to infections and diseases need further exploration.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Aguas Salinas/farmacología , Salmo salar/genética , Salmo salar/inmunología , Transcriptoma/efectos de los fármacos , Animales , Branquias/efectos de los fármacos , Branquias/inmunología , Branquias/metabolismo , Riñón Cefálico/efectos de los fármacos , Riñón Cefálico/inmunología , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Intestinos/inmunología , Regulación hacia Arriba/efectos de los fármacos
7.
Fish Shellfish Immunol ; 45(2): 780-90, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26057463

RESUMEN

Heart and skeletal muscle inflammation (HSMI) is a widespread disease of farmed Atlantic salmon (Salmo salar L.) and is associated with piscine orthoreovirus (PRV) infection. PRV is detectable in blood long before development of pathology in cardiac- and skeletal muscle appear, and erythrocytes have been identified as important target cells for the virus. The effects of PRV infection on cellular processes of erythrocytes are not known, but haemolytic anemia or systemic lysis of erythrocytes does not seem to occur, even with high virus loads in erythrocytes. In this study, gene expression profiling performed with high-density oligonucleotide microarray showed that PRV infection of erythrocytes induced a large panel of virus responsive genes. These involved interferon-regulated antiviral genes, as well as genes involved in antigen presentation via MHC class I. PRV infection also stimulated negative immune regulators. In contrast, a large number of immune genes expressed prior to infection were down-regulated. Moderate reduction of expression was also found for many genes encoding components of cytoskeleton and myofiber, proteins involved in metabolism, ion exchange, cell-cell interactions as well as growth factors and regulators of differentiation. PRV did not affect expression of genes involved in heme biosynthesis, gas exchange or erythrocyte-specific markers, but some regulators of erythropoiesis showed decreased transcription levels. These results indicate that PRV infection activates innate antiviral immunity in salmon erythrocytes, but suppresses other gene expression programs. Gene expression profiles suggest major phenotypic changes in PRV infected erythrocytes, but the functional consequences remain to be explored.


Asunto(s)
Eritrocitos/metabolismo , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica , Orthoreovirus/fisiología , Infecciones por Reoviridae/veterinaria , Salmo salar , Transcriptoma , Animales , Eritrocitos/virología , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Perfilación de la Expresión Génica/veterinaria , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Fenotipo , Reacción en Cadena de la Polimerasa/veterinaria , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología
8.
Br J Nutr ; 111(12): 2089-103, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24635969

RESUMEN

Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colesterol en la Dieta/metabolismo , Colesterol/biosíntesis , Herbivoria , Absorción Intestinal , Mucosa Intestinal/metabolismo , Salmo salar/metabolismo , Animales , Animales Endogámicos , Acuicultura , Colesterol en la Dieta/administración & dosificación , Colesterol en la Dieta/efectos adversos , Dieta/efectos adversos , Dieta/veterinaria , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/metabolismo , Ingestión de Energía , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/crecimiento & desarrollo , Intestinos/crecimiento & desarrollo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Noruega , Fitosteroles/metabolismo , Proteínas de Plantas/efectos adversos , Proteínas de Plantas/metabolismo , Distribución Aleatoria , Salmo salar/crecimiento & desarrollo , Aumento de Peso
9.
BMC Physiol ; 14: 2, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24581386

RESUMEN

BACKGROUND: Atlantic salmon aquaculture operations in the Northern hemisphere experience large seasonal fluctuations in seawater temperature. With summer temperatures often peaking around 18-20°C there is growing concern about the effects on fish health and performance. Since the heart has a major role in the physiological plasticity and acclimation to different thermal conditions in fish, we wanted to investigate how three and eight weeks exposure of adult Atlantic salmon to 19°C, previously shown to significantly reduce growth performance, affected expression of relevant genes and proteins in cardiac tissues under experimental conditions. RESULTS: Transcriptional responses in cardiac tissues after three and eight weeks exposure to 19°C (compared to thermal preference, 14°C) were analyzed with cDNA microarrays and validated by expression analysis of selected genes and proteins using real-time qPCR and immunofluorescence microscopy. Up-regulation of heat shock proteins and cell signaling genes may indicate involvement of the unfolded protein response in long-term acclimation to elevated temperature. Increased immunofluorescence staining of inducible nitric oxide synthase in spongy and compact myocardium as well as increased staining of vascular endothelial growth factor in epicardium could reflect induced vascularization and vasodilation, possibly related to increased oxygen demand. Increased staining of collagen I in the compact myocardium of 19°C fish may be indicative of a remodeling of connective tissue with long-term warm acclimation. Finally, higher abundance of transcripts for genes involved in innate cellular immunity and lower abundance of transcripts for humoral immune components implied altered immune competence in response to elevated temperature. CONCLUSIONS: Long-term exposure of Atlantic salmon to 19°C resulted in cardiac gene and protein expression changes indicating that the unfolded protein response, vascularization, remodeling of connective tissue and altered innate immune responses were part of the cardiac acclimation or response to elevated temperature.


Asunto(s)
Expresión Génica , Miocardio/metabolismo , Salmón/metabolismo , Temperatura , Animales , Análisis de Secuencia por Matrices de Oligonucleótidos , Salmón/genética , Agua de Mar
10.
Sci Total Environ ; 942: 173762, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852875

RESUMEN

The use of recirculating aquaculture systems (RAS) for Atlantic salmon (Salmo salar) production has become increasingly common. RAS water disinfection plays a crucial role on its biosecurity. Peracetic acid (PAA) is a promising disinfectant due to its powerful oxidative properties, broad antimicrobial spectrum, and rapid degradation into no harmful compounds. This study focused on assessing the consequences of prolonged application of a PAA-based disinfectant in a RAS stocked with salmon parr. The experiment included three treatment groups in triplicate: 0 mg/L PAA (control), 0.1 mg/L PAA, and 1 mg/L PAA, using nine-replicated RAS with a total of 360 fish (14.8 ± 2.3 g; N = 40/RAS). The study spanned 28 days, with samples collected on days 0, 14, and 28. The analyzed parameters were water quality, and fish parameters, including external welfare indicators, gill histology, total antioxidant capacity (TAC), reactive oxygen species/reactive nitrogen species (ROC/RNC), oxidative stress biomarkers related to DNA and protein, cellular DNA damage, and global gene expression. While water quality remained relatively stable, there was an increase in bacterial populations in the groups exposed to PAA, particularly 1 mg/L PAA. Fish weight did not differ between the control and PAA-exposed groups. TAC, ROC/RNC, and oxidative stress biomarkers exhibited similar trends. The study identified >400 differentially expressed genes (DEGs) in the skin, gill, and olfactory organ, with many of these DEGs associated with immune responses. Comparing the transcriptomic profiles of the three tissue organs revealed that the olfactory organ was the most reactive to PAA treatment. This study shows that calculated PAA concentrations of 0.1 mg/L and 1 mg/L in the pump-sump, contributed to an increase of bacteria whereas no detectable differences in health and welfare of salmon parr were found. These findings are promising for the implementation of PAA-based disinfectants in RAS stoked with Atlantic salmon parr.


Asunto(s)
Acuicultura , Desinfectantes , Ácido Peracético , Salmo salar , Animales , Ácido Peracético/farmacología , Acuicultura/métodos , Estrés Oxidativo , Desinfección/métodos , Calidad del Agua
11.
Gen Comp Endocrinol ; 192: 181-90, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23665104

RESUMEN

Anemia is a common pathophysiological response to stressors, malnutrition and infections in salmonid fish. In order to improve our understanding of the molecular mechanisms and markers associated with induced erythropoiesis (EP) during acute anemia in Atlantic salmon (Salmo salar L.), we performed transcriptome analysis of fish injected with the hemolytic compound phenylhydrazine (PHZ). Treatment with a low dose of PHZ resulted in moderate but significant reduction of hematocrit (Hct) and increased transcription of cardiac erythropoietin (epo) at 2 days post challenge (dpc), and epo receptor (epor) in spleen from 2 to 4 dpc. Oligonucleotide microarrays were used to characterize the events of EP in the spleen, an important organ for expansive EP during acute erythropoietic stress in rodents, and these were compared to gene expression profiles of untreated mature red blood cells (RBC) in order to search for erythroid-specific genes. Splenic responses suggested a prevalence of protective mechanisms at the first stage, characterized by induced xenobiotic metabolism and responses to oxidative and protein stress. Erythroid-specific regulation was evident at 2 dpc and enhanced by 4 dpc, and gene expression profiles witnessed a rapid establishment of RBC phenotype although Hct levels remained low. A large group of genes showed a strong correlation to globins by expression profiles. In addition to epor this included genes of heme and iron metabolism, scavengers of free radicals and chaperones, channels and transporters, markers of erythrocytes, regulators of proliferation and cell cycle arrest and many genes with unidentified roles in RBC differentiation. Induced EP in spleen was characterized by specific features, such as upregulation of innate antiviral immune genes and sustained high expression of proapoptotic genes including caspases. Transcriptome changes suggested an association between EP and suppression of several developmental programs including adaptive immune responses. In conclusion, acute hemolysis and resulting anemia rapidly induced EP in the spleen of Atlantic salmon, which showed both common characteristics for all vertebrates as well as fish-specific properties.


Asunto(s)
Anemia/genética , Eritropoyesis/fisiología , Salmo salar/metabolismo , Transcriptoma/genética , Animales , Eritropoyesis/genética , Enfermedades de los Peces , Perfilación de la Expresión Génica , Salmo salar/genética , Bazo/metabolismo
12.
Aquat Toxicol ; 260: 106574, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244121

RESUMEN

Hydrogen sulphide (H2S) is a naturally occurring compound generated either endogenously or exogenously and serves both as a gaseous signalling molecule and an environmental toxicant. Though it has been extensively investigated in mammalian systems, the biological function of H2S in teleost fish is poorly identified. Here we demonstrate how exogenous H2S regulates cellular and molecular processes in Atlantic salmon (Salmo salar) using a primary hepatocyte culture as a model. We employed two forms of sulphide donors: the fast-releasing salt form, sodium hydrosulphide (NaHS) and the slow-releasing organic analogue, morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate (GYY4137). Hepatocytes were exposed to either a low (LD, 20 µg/L) or high (HD, 100 µg/L) dose of the sulphide donors for 24 hrs, and the expression of key sulphide detoxification and antioxidant defence genes were quantified by qPCR. The key sulphide detoxification genes sulfite oxidase 1 (soux) and the sulfide: quinone oxidoreductase 1 and 2 (sqor) paralogs in salmon showed pronounced expression in the liver and likewise responsive to the sulphide donors in the hepatocyte culture. These genes were ubiquitously expressed in different organs of salmon as well. HD-GYY4137 upregulated the expression of antioxidant defence genes, particularly glutathione peroxidase, glutathione reductase and catalase, in the hepatocyte culture. To explore the influence of exposure duration, hepatocytes were exposed to the sulphide donors (i.e., LD versus HD) either transient (1h) or prolonged (24h). Prolonged but not transient exposure significantly reduced hepatocyte viability, and the effects were not dependent on concentration or form. The proliferative potential of the hepatocytes was only affected by prolonged NaHS exposure, and the impact was not concentration dependent. Microarray analysis revealed that GYY4137 caused more substantial transcriptomic changes than NaHS. Moreover, transcriptomic alterations were more marked following prolonged exposure. Genes involved in mitochondrial metabolism were downregulated by the sulphide donors, primarily in NaHS-exposed cells. Both sulphide donors influenced the immune functions of hepatocytes: genes involved in lymphocyte-mediated response were affected by NaHS, whereas inflammatory response was targeted by GYY4137. In summary, the two sulphide donors impacted the cellular and molecular processes of teleost hepatocytes, offering new insights into the mechanisms underlying H2S interactions in fish.


Asunto(s)
Salmo salar , Contaminantes Químicos del Agua , Animales , Salmo salar/genética , Transcriptoma , Antioxidantes , Contaminantes Químicos del Agua/toxicidad , Sulfuros/toxicidad , Hepatocitos , Mamíferos
13.
BMC Genomics ; 13: 205, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22646522

RESUMEN

BACKGROUND: Cardiomyopathy syndrome (CMS) is a severe disease of Atlantic salmon (Salmo salar L.) associated with significant economic losses in the aquaculture industry. CMS is diagnosed with a severe inflammation and degradation of myocardial tissue caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV), with structural similarities to the Totiviridae family. In the present study we characterized individual host responses and genomic determinants of different disease outcomes. RESULTS: From time course studies of experimentally infected Atlantic salmon post-smolts, fish exhibited different outcomes of infection and disease. High responder (HR) fish were characterized with sustained and increased viral load and pathology in heart tissue. Low responder (LR) fish showed declining viral load from 6-10 weeks post infection (wpi) and absence of pathology. Global gene expression (SIQ2.0 oligonucleotide microarray) in HR and LR hearts during infection was compared, in order to characterize differences in the host response and to identify genes with expression patterns that could explain or predict the different outcomes of disease. Virus-responsive genes involved in early antiviral and innate immune responses were upregulated equally in LR and HR at the first stage (2-4 wpi), reflecting the initial increase in virus replication. Repression of heart muscle development was identified by gene ontology enrichment analyses, indicating the early onset of pathology. By six weeks both responder groups had comparable viral load, while increased pathology was observed in HR fish. This was reflected by induced expression of genes implicated in apoptosis and cell death mechanisms, presumably related to lymphocyte regulation and survival. In contrast, LR fish showed earlier activation of NK cell-mediated cytotoxicity and NOD-like receptor signaling pathways. At the late stage of infection, increased pathology and viral load in HR was accompanied by a broad activation of genes involved in adaptive immunity and particularly T cell responses, probably reflecting the increased infiltration and homing of virus-specific T cells to the infected heart. This was in sharp contrast to LR fish, where recovery and reduced viral load was associated with a significantly reduced transcription of adaptive immunity genes and activation of genes involved in energy metabolism. CONCLUSIONS: In contrast to LR, a stronger and sustained expression of genes involved in adaptive immune responses in heart tissue of HR at the late stage of disease probably reflected the increased lymphocyte infiltration and pathological outcome. In addition to controlled adaptive immunity and activation of genes involved in cardiac energy metabolism in LR at the late stage, recovery of this group could also be related to an earlier activation of NOD-like receptor signaling and NK cell-mediated cytotoxicity pathways.


Asunto(s)
Cardiomiopatías/genética , Salmo salar/genética , Inmunidad Adaptativa/genética , Animales , Apoptosis/genética , Cardiomiopatías/patología , Cardiomiopatías/virología , Metabolismo Energético/genética , Enfermedades de los Peces/genética , Enfermedades de los Peces/patología , Enfermedades de los Peces/virología , Corazón/crecimiento & desarrollo , Corazón/virología , Análisis de Secuencia por Matrices de Oligonucleótidos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Totiviridae/fisiología , Transcriptoma/genética , Carga Viral
14.
Toxicol Rep ; 9: 1461-1471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518465

RESUMEN

Peracetic acid (PAA) is an organic peroxide that produces free radicals, which contribute to its potent disinfection power. At therapeutic doses, PAA is considered a mild stressor that can trigger transient local and systemic oxidative stress in fish, but the resulting consequences in the brain have yet to be identified. Therefore, we report the brain transcriptome of Atlantic salmon (Salmo salar) smolts that have been periodically exposed to PAA. Fish were treated three times (every 15 days) with PAA with either short (15 min) or long (30 min) exposure periods. After the third treatment, the whole brain was collected and subjected to biochemical and transcriptomic analyses. The level of reactive oxygen species in the brain was not significantly affected by recurrent PAA treatments. Microarray analysis was performed on the whole brain and revealed 205 differentially expressed genes (DEGs), regardless of the duration of the treatment. The short exposure duration had a more considerable impact on the brain transcriptome, correlating with 70% more DEGs than the long exposure. Strikingly, the brain transcriptome was characterised by the downregulation of gene expression, especially in the short exposure group, and around 82% of the identified DEGs were downregulated. Some of the highly affected genes were key molecules of the vasotocinergic and isotocinergic systems and the corticotropin-releasing factor signalling system, indicating interference of the stress axis but could also suggest an anxiolytic effect. In addition, there were alterations in genes involved in cellular metabolism and processing, signalling and trafficking, and innate immunity, which underscores the physiological changes in the brain following recurrent PAA treatment. Overall, the transcriptomic data reveal that recurrent oxidant treatment could influence brain functions, and although the magnitude was marginal, the alterations suggested neurological adaptations of fish to PAA as a potential chemical stressor. The results identify the risks of PAA, which would be valuable in drafting a framework for its empirically driven use in fish farming.

15.
Front Immunol ; 13: 948897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090977

RESUMEN

Treatment development for parasitic infestation is often limited to disease resolution as an endpoint response, and physiological and immunological consequences are not thoroughly considered. Here, we report the impact of exposing Atlantic salmon affected with amoebic gill disease (AGD) to peracetic acid (PAA), an oxidative chemotherapeutic. AGD-affected fish were treated with PAA either by exposing them to 5 ppm for 30 min or 10 ppm for 15 min. Unexposed fish from both infected and uninfected groups were also included. Samples for molecular, biochemical, and histological evaluations were collected at 24 h, 2 weeks, and 4 weeks post-treatment. Behavioral changes were observed during PAA exposure, and post-treatment mortality was higher in the infected and PAA treated groups, especially in 10 ppm for 15 min. Plasma indicators showed that liver health was affected by AGD, though PAA treatment did not exacerbate the infection-related changes. Transcriptome profiling in the gills showed significant changes, triggered by AGD and PAA treatments, and the effects of PAA were more notable 24 h after treatment. Genes related to immune pathways of B- and T- cells and protein synthesis and metabolism were downregulated, where the magnitude was more remarkable in 10 ppm for 15 min group. Even though treatment did not fully resolve the pathologies associated with AGD, 5 ppm for 30 min group showed lower parasite load at 4 weeks post-treatment. Mucous cell parameters (i.e., size and density) increased within 24 h post-treatment and were significantly higher at termination, especially in AGD-affected fish, with some treatment effects influenced by the dose of PAA. Infection and treatments resulted in oxidative stress-in the early phase in the gill mucosa, while systemic reactive oxygen species (ROS) dysregulation was evident at the later stage. Infected fish responded to elevated circulating ROS by increasing antioxidant production. Exposing the fish to a crowding stress revealed the interference in the post-stress responses. Lower cortisol response was displayed by AGD-affected groups. Collectively, the study established that PAA, within the evaluated treatment protocols, could not provide a convincing treatment resolution and, thus, requires further optimization. Nonetheless, PAA treatment altered the mucosal immune and stress responses of AGD-affected Atlantic salmon, shedding light on the host-parasite-treatment interactions. .


Asunto(s)
Parásitos , Salmo salar , Amebiasis , Animales , Enfermedades de los Peces , Membrana Mucosa , Oxidantes , Ácido Peracético , Especies Reactivas de Oxígeno
16.
BMC Genomics ; 12: 459, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21943289

RESUMEN

BACKGROUND: Cardiomyopathy syndrome (CMS) is a disease associated with severe myocarditis primarily in adult farmed Atlantic salmon (Salmo salar L.), caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV) with structural similarities to the Totiviridae family. Here we present the first characterisation of host immune responses to CMS assessed by microarray transcriptome profiling. RESULTS: Unvaccinated farmed Atlantic salmon post-smolts were infected by intraperitoneal injection of PMCV and developed cardiac pathology consistent with CMS. From analysis of heart samples at several time points and different tissues at early and clinical stages by oligonucleotide microarrays (SIQ2.0 chip), six gene sets representing a broad range of immune responses were identified, showing significant temporal and spatial regulation. Histopathological examination of cardiac tissue showed myocardial lesions from 6 weeks post infection (wpi) that peaked at 8-9 wpi and was followed by a recovery. Viral RNA was detected in all organs from 4 wpi suggesting a broad tissue tropism. High correlation between viral load and cardiac histopathology score suggested that cytopathic effect of infection was a major determinant of the myocardial changes. Strong and systemic induction of antiviral and IFN-dependent genes from 2 wpi that levelled off during infection, was followed by a biphasic activation of pathways for B cells and MHC antigen presentation, both peaking at clinical pathology. This was preceded by a distinct cardiac activation of complement at 6 wpi, suggesting a complement-dependent activation of humoral Ab-responses. Peak of cardiac pathology and viral load coincided with cardiac-specific upregulation of T cell response genes and splenic induction of complement genes. Preceding the reduction in viral load and pathology, these responses were probably important for viral clearance and recovery. CONCLUSIONS: By comparative analysis of gene expression, histology and viral load, the temporal and spatial regulation of immune responses were characterised and novel immune genes identified, ultimately leading to a more complete understanding of host-virus responses and pathology and protection in Atlantic salmon during CMS.


Asunto(s)
Cardiomiopatías/veterinaria , Enfermedades de los Peces/inmunología , Salmo salar/genética , Salmo salar/inmunología , Transcriptoma , Animales , Cardiomiopatías/genética , Cardiomiopatías/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Expresión Génica , Perfilación de la Expresión Génica , Corazón/virología , Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Salmo salar/virología , Totiviridae/patogenicidad , Carga Viral
17.
Virol J ; 8: 396, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21827718

RESUMEN

BACKGROUND: Infectious pancreatic necrosis virus (IPNV) is an aquatic member of the Birnaviridae family that causes widespread disease in salmonids. IPNV is represented by multiple strains with markedly different virulence. Comparison of isolates reveals hyper variable regions (HVR), which are presumably associated with pathogenicity. However little is known about the rates and modes of sequence divergence and molecular mechanisms that determine virulence. Also how the host response may influence IPNV virulence is poorly described. METHODS: In this study we compared two field isolates of IPNV (NFH-Ar and NFH-El). The sequence changes, replication and mortality were assessed following experimental challenge of Atlantic salmon. Gene expression analyses with qPCR and microarray were applied to examine the immune responses in head kidney. RESULTS: Significant differences in mortality were observed between the two isolates, and viral load in the pancreas at 13 days post infection (d p.i.) was more than 4 orders of magnitude greater for NFH-Ar in comparison with NFH-El. Sequence comparison of five viral genes from the IPNV isolates revealed different mutation rates and Ka/Ks ratios. A strong tendency towards non-synonymous mutations was found in the HRV of VP2 and in VP3. All mutations in VP5 produced precocious stop codons. Prior to the challenge, NFH-Ar and NFH-El possessed high and low virulence motifs in VP2, respectively. Nucleotide substitutions were noticed already during passage of viruses in CHSE-214 cells and their accumulation continued in the challenged fish. The sequence changes were notably directed towards low virulence. Co-ordinated activation of anti-viral genes with diverse functions (IFN-a1 and c, sensors - Rig-I, MDA-5, TLR8 and 9, signal transducers - Srk2, MyD88, effectors - Mx, galectin 9, galectin binding protein, antigen presentation - b2-microglobulin) was observed at 13 d p.i. (NFH-Ar) and 29 d p.i. (both isolates). CONCLUSIONS: Mortality and expression levels of the immune genes were directly related to the rate of viral replication, which was in turn associated with sequences of viral genes. Rapid changes in the viral genome that dramatically reduced virus proliferation might indicate a higher susceptibility to protective mechanism employed by the host. Disease outbreak and mortality depend on a delicate balance between host defence, regulation of signalling cascades and virus genomic properties.


Asunto(s)
Infecciones por Birnaviridae/inmunología , Enfermedades de los Peces/inmunología , Virus de la Necrosis Pancreática Infecciosa/inmunología , Virus de la Necrosis Pancreática Infecciosa/patogenicidad , Mutación , Salmo salar/virología , Animales , Infecciones por Birnaviridae/mortalidad , Infecciones por Birnaviridae/patología , Infecciones por Birnaviridae/virología , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/patología , Enfermedades de los Peces/virología , Perfilación de la Expresión Génica , Virus de la Necrosis Pancreática Infecciosa/genética , Virus de la Necrosis Pancreática Infecciosa/aislamiento & purificación , Riñón/virología , Análisis por Micromatrices , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Supervivencia , Virulencia , Replicación Viral
18.
Genes (Basel) ; 12(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921813

RESUMEN

The crustacean ectoparasite salmon louse (Lepeophtheirus salmonis), which severely affects Atlantic salmon health and welfare is one of the main problems of commercial aquaculture. In the present study, fish were fed a diet supplemented with extra minerals through the inclusion of a commercial additive (Biofeed Forte Salmon), substituting wheat in the control diet, before experimental infestation with salmon lice. Lice counts reduced with time but with no apparent effect of the diets. Further, fish fed the mineral diet had an overall higher number of blue (acidic) mucous cells, while the ratio of purple mucous cells was higher in the mineral diet. The transcriptional response in skin was enhanced at 7 dpc (copepodite life stage) in fish fed the mineral diet including immune and stress responses, while at 21 dpc (pre-adult life stage), the difference disappeared, or reversed with stronger induction in the control diet. Overall, 9.3% of the genes affected with lice also responded to the feed, with marked differences in outer (scale + epidermis) and inner (dermis) skin layers. A comparison of transcriptome data with five datasets from previous trials revealed common features and gene markers of responses to lice, stress, and mechanically induced wounds. Results suggested a prevalence of generic responses in wounded skin and lice-infected salmon.


Asunto(s)
Copépodos/fisiología , Suplementos Dietéticos , Enfermedades de los Peces/genética , Minerales/administración & dosificación , Salmo salar/genética , Piel/metabolismo , Transcriptoma/efectos de los fármacos , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Salmo salar/inmunología , Salmo salar/parasitología , Piel/efectos de los fármacos , Piel/inmunología , Piel/parasitología
19.
Antioxidants (Basel) ; 10(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34943035

RESUMEN

Although chemotherapeutics are used to treat infections in farmed fish, knowledge on how they alter host physiology is limited. Here, we elucidated the physiological consequences of repeated exposure to the potent oxidative chemotherapeutic peracetic acid (PAA) in Atlantic salmon (Salmo salar) smolts. Fish were exposed to the oxidant for 15 (short exposure) or 30 (long exposure) minutes every 15 days over 45 days. Unexposed fish served as the control. Thereafter, the ability of the remaining fish to handle a secondary stressor was investigated. Periodic chemotherapeutic exposure did not affect production performance, though survival was lower in the PAA-treated groups than in the control. Increased ventilation, erratic swimming, and a loss of balance were common behavioural manifestations during the oxidant exposure. The plasma reactive oxygen species levels increased in the PAA-treated groups, particularly after the third exposure, suggesting an alteration in the systemic oxidative stress status. Plasma indicators for internal organ health were affected to a certain degree, with the changes mainly observed after the second and third exposures. Metabolomics disclosed that the oxidant altered several circulating metabolites. Inosine and guanosine were the two metabolites significantly affected by the oxidative stressor, regardless of exposure time. A microarray analysis revealed that the gills and liver were more responsive to the oxidant than the skin, with the gills being the most sensitive. Moreover, the magnitude of the transcriptomic modifications depended on the exposure duration. A functional analysis showed that genes involved in immunity and ribosomal functions were significantly affected in the gills. In contrast, genes crucial for the oxidation-reduction process were mainly targeted in the liver. Skin mucus proteomics uncovered that the changes in the mucosal proteome were dependent on exposure duration and that the oxidant interfered with ribosome-related processes. Mucosal mapping revealed gill mucous cell hypertrophy after the second and third exposures, although the skin morphological parameters remained unaltered. Lastly, repeated oxidant exposures did not impede the ability of the fish to mount a response to a secondary stressor. This study provides insights into how a chemical oxidative stressor alters salmon physiology at both the systemic and mucosal levels. This knowledge will be pivotal in developing an evidence-driven approach to the use of oxidative therapeutics in fish, with some of the molecules and pathways identified as potential biomarkers and targets for assessing the physiological cost of these treatments.

20.
Front Immunol ; 12: 705601, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621264

RESUMEN

Transcriptomics provides valuable data for functional annotations of genes, the discovery of biomarkers, and quantitative assessment of responses to challenges. Meta-analysis of Nofima's Atlantic salmon microarray database was performed for the selection of genes that have shown strong and reproducible expression changes. Using data from 127 experiments including 6440 microarrays, four transcription modules (TM) were identified with a total of 902 annotated genes: 161 virus responsive genes - VRG (activated with five viruses and poly I:C), genes that responded to three pathogenic bacteria (523 up and 33 down-regulated genes), inflammation not caused by infections - wounds, melanized foci in skeletal muscle and exposure to PAMP (180 up and 72 down-regulated genes), and stress by exercise, crowding and cortisol implants (33 genes). To assist the selection of gene markers, genes in each TM were ranked according to the scale of expression changes. In terms of functional annotations, association with diseases and stress was unknown or not reflected in public databases for a large part of genes, including several genes with the highest ranks. A set of multifunctional genes was discovered. Cholesterol 25-hydroxylase was present in all TM and 22 genes, including most differentially expressed matrix metalloproteinases 9 and 13 were assigned to three TMs. The meta-analysis has improved understanding of the defense strategies in Atlantic salmon. VRG have demonstrated equal or similar responses to RNA (SAV, IPNV, PRV, and ISAV), and DNA (gill pox) viruses, injection of bacterial DNA (plasmid) and exposure of cells to PAMP (CpG and gardiquimod) and relatively low sensitivity to inflammation and bacteria. Genes of the highest rank show preferential expression in erythrocytes. This group includes multigene families (gig and several trim families) and many paralogs. Of pathogen recognition receptors, only RNA helicases have shown strong expression changes. Most VRG (82%) are effectors with a preponderance of ubiquitin-related genes, GTPases, and genes of nucleotide metabolism. Many VRG have unknown roles. The identification of TMs makes possible quantification of responses and assessment of their interactions. Based on this, we are able to separate pathogen-specific responses from general inflammation and stress.


Asunto(s)
Bacterias/inmunología , Enfermedades de los Peces , Regulación de la Expresión Génica/inmunología , Salmo salar , Transcriptoma/inmunología , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Salmo salar/inmunología , Salmo salar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA