Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(5): 1101-1102, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428390
2.
FASEB J ; 36(1): e22088, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921686

RESUMEN

Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of 'hyperinsulinemia' and 'starvation' programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.


Asunto(s)
Antígenos CD/biosíntesis , Regulación hacia Abajo , Hiperinsulinismo/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , ARN Mensajero/biosíntesis , Receptor de Insulina/biosíntesis , Animales , Antígenos CD/genética , Línea Celular , Humanos , Hiperinsulinismo/genética , Ratones , Ratones Noqueados , ARN Mensajero/genética , RNA-Seq , Receptor de Insulina/genética
3.
Nucleic Acids Res ; 46(15): 7772-7792, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986096

RESUMEN

Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Genómica , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Transcriptoma , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico , Perfilación de la Expresión Génica , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Insulina/metabolismo , Enfermedades Metabólicas/genética , Modelos Moleculares , Fosforilación Oxidativa , Sitios de Carácter Cuantitativo , ARN/metabolismo
4.
FASEB J ; 31(12): 5196-5207, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28774889

RESUMEN

Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P < 0.001) and total RNA content (-16 ± 2% vs. IGF-1; P < 0.001) in IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P < 0.05 vs. control) and total protein (+20 ± 2%; P < 0.001 vs. control) were not prevented by CX treatment. Suppression of rRNA synthesis during IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P < 0.001) and p70 S6K1 (269 ± 41% vs. CX; P < 0.001) phosphorylation. Despite robust inhibition of the dynamic ribosomal biogenesis response to IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro.-Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.


Asunto(s)
Hipertrofia/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Benzotiazoles/farmacología , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Naftiridinas/farmacología , Fosforilación/efectos de los fármacos , ARN Mensajero/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
5.
FASEB J ; 31(1): 96-108, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27698205

RESUMEN

We recently developed a binary (i.e., young vs. old) classifier using human muscle RNA profiles that accurately distinguished the age of multiple tissue types. Pathway analysis did not reveal regulators of these 150 genes, so we used reverse genetics and pharmacologic methods to explore regulation of gene expression. Using small interfering RNA, well-studied age-related factors (i.e., rapamycin, resveratrol, TNF-α, and staurosporine), quantitative real-time PCR and clustering analysis, we studied gene-gene interactions in human skeletal muscle and renal epithelial cells. Individual knockdown of 10 different age genes yielded a consistent pattern of gene expression in muscle and renal cells, similar to in vivo. Potential epigenetic interactions included HIST1H3E knockdown, leading to decreased PHF19 and PCDH9, and increased ICAM5 in muscle and renal cells, while ICAM5 knockdown reduced HIST1H3E expression. Resveratrol, staurosporine, and TNF-α significantly regulated the in vivo aging genes, while only rapamycin perturbed the healthy-age gene expression signature in a manner consistent with in vivo. In vitro coordination of gene expression for this in vivo tissue age signature indicates a degree of direct coordination, and the observed link with mTOR activity suggests a direct link between a robust biomarker of healthy neuromuscular age and a major axis of life span in model systems.-Crossland, H., Atherton, P. J., Strömberg, A., Gustafsson, T., Timmons, J. A. A reverse genetics cell-based evaluation of genes linked to healthy human tissue age.


Asunto(s)
Envejecimiento/fisiología , Regulación de la Expresión Génica/fisiología , Riñón/metabolismo , Músculo Esquelético/metabolismo , ARN/metabolismo , Transcriptoma/fisiología , Humanos , ARN/genética , Interferencia de ARN , ARN Interferente Pequeño
6.
Nucleic Acids Res ; 44(11): e109, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27095197

RESUMEN

DNA microarrays and RNAseq are complementary methods for studying RNA molecules. Current computational methods to determine alternative exon usage (AEU) using such data require impractical visual inspection and still yield high false-positive rates. Integrated Gene and Exon Model of Splicing (iGEMS) adapts a gene-level residuals model with a gene size adjusted false discovery rate and exon-level analysis to circumvent these limitations. iGEMS was applied to two new DNA microarray datasets, including the high coverage Human Transcriptome Arrays 2.0 and performance was validated using RT-qPCR. First, AEU was studied in adipocytes treated with (n = 9) or without (n = 8) the anti-diabetes drug, rosiglitazone. iGEMS identified 555 genes with AEU, and robust verification by RT-qPCR (∼90%). Second, in a three-way human tissue comparison (muscle, adipose and blood, n = 41) iGEMS identified 4421 genes with at least one AEU event, with excellent RT-qPCR verification (95%, n = 22). Importantly, iGEMS identified a variety of AEU events, including 3'UTR extension, as well as exon inclusion/exclusion impacting on protein kinase and extracellular matrix domains. In conclusion, iGEMS is a robust method for identification of AEU while the variety of exon usage between human tissues is 5-10 times more prevalent than reported by the Genotype-Tissue Expression consortium using RNA sequencing.


Asunto(s)
Empalme Alternativo , Biología Computacional/métodos , Exones , Genómica/métodos , Adulto , Animales , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma
7.
PLoS Genet ; 9(3): e1003389, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555298

RESUMEN

Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4 × 10(-30)). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13)) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7))) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18-78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6)) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to the muscle age-related genes. Finally, a number of specific chromosomal loci, including 1q12 and 13q21, contributed by more than chance to the age-related gene list (P = 0.01-0.005), implying possible epigenetic events. We conclude that human muscle age-related molecular processes appear distinct from the processes regulated by those of physical activity.


Asunto(s)
Adaptación Fisiológica/genética , Envejecimiento , Ejercicio Físico/fisiología , Músculo Esquelético , Adolescente , Adulto , Anciano , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/fisiología , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/fisiología , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
Am J Physiol Endocrinol Metab ; 304(8): E885-94, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23482445

RESUMEN

Failure of white adipose tissue to appropriately store excess metabolic substrate seems to underpin obesity-associated type 2 diabetes. Encouraging "browning" of white adipose has been suggested as a therapeutic strategy to help dispose of excess stored lipid and ameliorate the resulting insulin resistance. Genetic variation at the DNA locus encoding the novel proteolipid neuronatin has been associated with obesity, and we recently observed that neuronatin expression is reduced in subcutaneous adipose tissue from obese humans. Thus, to explore the function of neuronatin further, we used RNAi to silence its expression in murine primary adipocyte cultures and examined the effects on adipocyte phenotype. We found that primary adipocytes express only the longer isoform of neuronatin. Loss of neuronatin led to increased mitochondrial biogenesis, indicated by greater intensity of MitoTracker Green staining. This was accompanied by increased expression of UCP1 and the key genes in mitochondrial oxidative phosphorylation, PGC-1α, Cox8b, and Cox4 in primary subcutaneous white adipocytes, indicative of a "browning" effect. In addition, phosphorylation of AMPK and ACC was increased, suggestive of increased fatty acid utilization. Similar, but less pronounced, effects of neuronatin silencing were also noted in primary brown adipocytes. In contrast, loss of neuronatin caused a reduction in both basal and insulin-stimulated glucose uptake and glycogen synthesis, likely mediated by a reduction in Glut1 protein upon silencing of neuronatin. In contrast, loss of neuronatin had no effect on insulin signaling. In conclusion, neuronatin appears to be a novel regulator of browning and metabolic substrate disposal in white adipocytes.


Asunto(s)
Adipocitos Blancos/fisiología , Tejido Adiposo Pardo/fisiología , Glucemia/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Obesidad/genética , Adipocitos Blancos/citología , Adipogénesis/fisiología , Tejido Adiposo Pardo/citología , Adulto , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Glucógeno/biosíntesis , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Persona de Mediana Edad , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Fenotipo , Cultivo Primario de Células
9.
Am J Physiol Endocrinol Metab ; 305(2): E183-93, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23695213

RESUMEN

Focal adhesion kinase (FAK) is an attachment complex protein associated with the regulation of muscle mass through as-of-yet unclear mechanisms. We tested whether FAK is functionally important for muscle hypertrophy, with the hypothesis that FAK knockdown (FAK-KD) would impede cell growth associated with a trophic stimulus. C2C12 skeletal muscle cells harboring FAK-targeted (FAK-KD) or scrambled (SCR) shRNA were created using lentiviral transfection techniques. Both FAK-KD and SCR myotubes were incubated for 24 h with IGF-I (10 ng/ml), and additional SCR cells (±IGF-1) were incubated with a FAK kinase inhibitor before assay of cell growth. Muscle protein synthesis (MPS) and putative FAK signaling mechanisms (immunoblotting and coimmunoprecipitation) were assessed. IGF-I-induced increases in myotube width (+41 ± 7% vs. non-IGF-I-treated) and total protein (+44 ± 6%) were, after 24 h, attenuated in FAK-KD cells, whereas MPS was suppressed in FAK-KD vs. SCR after 4 h. These blunted responses were associated with attenuated IGF-I-induced FAK Tyr³97 phosphorylation and markedly suppressed phosphorylation of tuberous sclerosis complex 2 (TSC2) and critical downstream mTOR signaling (ribosomal S6 kinase, eIF4F assembly) in FAK shRNA cells (all P < 0.05 vs. IGF-I-treated SCR cells). However, binding of FAK to TSC2 or its phosphatase Shp-2 was not affected by IGF-I or cell phenotype. Finally, FAK-KD-mediated suppression of cell growth was recapitulated by direct inhibition of FAK kinase activity in SCR cells. We conclude that FAK is required for IGF-I-induced muscle hypertrophy, signaling through a TSC2/mTOR/S6K1-dependent pathway via means requiring the kinase activity of FAK but not altered FAK-TSC2 or FAK-Shp-2 binding.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Músculo Esquelético/crecimiento & desarrollo , Proteínas Quinasas S6 Ribosómicas 90-kDa/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteínas Supresoras de Tumor/fisiología , Algoritmos , Animales , Western Blotting , Células Cultivadas , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Vectores Genéticos , Inmunoprecipitación , Lentivirus/genética , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/citología , Fosforilación/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
10.
Arthritis Rheum ; 64(10): 3256-66, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22833266

RESUMEN

OBJECTIVE: Chronological age is a powerful epidemiologic risk factor for osteoarthritis (OA), a multifactorial disease that is characterized by articular cartilage (AC) degradation. It is unclear from a molecular perspective how aging interacts with OA to produce this risk to AC integrity. To address this key question, we used in vivo time-course analysis of OA development and murine interstrain variability in natural susceptibility to OA to examine changes in non-OA-prone CBA mice versus OA-prone STR/Ort mice, which develop disease that bears significant histologic resemblance to human OA. Through global transcriptome profiling, we attempted to discover the molecular signature linked with both OA vulnerability and progression. METHODS: Affymetrix Mouse Gene 1.0 ST Array profiles were generated from AC samples derived from CBA and STR/Ort mice at 3 different ages, corresponding to the stages prior to, at, and late after the natural onset of OA in the STR/Ort mice. RESULTS: We found that the OA in STR/Ort mice exhibited a molecular phenotype resembling human OA, and we pinpointed a central role of NF-κB signaling and the emergence of an immune-related signature in OA cartilage over time. We discovered that, strikingly, young healthy AC has a highly expressed skeletal muscle gene expression program, which is switched off during maturation, but is intriguingly retained in AC during OA development in STR/Ort mice. CONCLUSION: This study is the first to show that AC chondrocytes share a high-abundance gene-expression program with skeletal muscle. We show that failure to switch this program off, as well as the restoration of this program, is associated with inappropriate expression of NF-κB signaling pathways, skeletal muscle-related genes, and induction and/or progression of OA.


Asunto(s)
Cartílago Articular/metabolismo , Condrocitos/metabolismo , Osteoartritis/genética , Animales , Cartílago Articular/patología , Condrocitos/patología , Perfilación de la Expresión Génica , Genotipo , Ratones , Osteoartritis/metabolismo , Osteoartritis/patología , Fenotipo , Análisis de Matrices Tisulares
12.
Adv Genet (Hoboken) ; 4(2): 2200024, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37288167

RESUMEN

Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.

13.
Am J Physiol Endocrinol Metab ; 303(8): E1053-60, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22912368

RESUMEN

The transcription factor Tbx15 is expressed predominantly in brown adipose tissue and in those white adipose depots that are capable of giving rise to brown-in-white ("brite"/"beige") adipocytes. Therefore, we have investigated a possible role here of Tbx15 in brown and brite adipocyte differentiation in vitro. Adipocyte precursors were isolated from interscapular and axilliary brown adipose tissues, inguinal white ("brite") adipose tissue, and epididymal white adipose tissue in 129/Sv mouse pups and differentiated in culture. Differentiation was enhanced by chronic treatment with the PPARγ agonist rosiglitazone plus the sympathetic neurotransmitter norepinephrine. Using short interfering RNAs (siRNA) directed toward Tbx15 in these primary adipocyte cultures, we decreased Tbx15 expression >90%. This resulted in reduced expression levels of adipogenesis markers (PPARγ, aP2). Importantly, Tbx15 knockdown reduced the expression of brown phenotypic marker genes (PRDM16, PGC-1α, Cox8b/Cox4, UCP1) in brown adipocytes and even more markedly in inguinal white adipocytes. In contrast, Tbx15 knockdown had no effect on white adipocytes originating from a depot that is not brite competent in vivo (epididymal). Therefore, Tbx15 may be essential for the development of the adipogenic and thermogenic programs in adipocytes/adipomyocytes capable of developing brown adipocyte features.


Asunto(s)
Adipocitos Marrones/fisiología , Adipocitos Blancos/fisiología , Proteínas de Dominio T Box/fisiología , Adipocitos Marrones/ultraestructura , Adipocitos Blancos/ultraestructura , Adipogénesis/fisiología , Animales , Western Blotting , Diferenciación Celular/fisiología , Cartilla de ADN , Marcadores Genéticos , Hipoglucemiantes/farmacología , Ratones , PPAR gamma/agonistas , Fenotipo , ARN/biosíntesis , ARN/aislamiento & purificación , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Rosiglitazona , Proteínas de Dominio T Box/genética , Tiazolidinedionas/farmacología
14.
Am J Physiol Endocrinol Metab ; 302(1): E19-31, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21828341

RESUMEN

Mainly from cell culture studies, a series of genes that have been suggested to be characteristic of different types of adipocytes have been identified. Here we have examined gene expression patterns in nine defined adipose depots: interscapular BAT, cervical BAT, axillary BAT, mediastinic BAT, cardiac WAT, inguinal WAT, retroperitoneal WAT, mesenteric WAT, and epididymal WAT. We found that each depot displayed a distinct gene expression fingerprint but that three major types of depots were identifiable: the brown, the brite, and the white. Although differences in gene expression pattern were generally quantitative, some gene markers showed, even in vivo, remarkable depot specificities: Zic1 for the classical BAT depots, Hoxc9 for the brite depots, Hoxc8 for the brite and white in contrast to the brown, and Tcf21 for the white depots. The effect of physiologically induced recruitment of thermogenic function (cold acclimation) on the expression pattern of the genes was quantified; in general, the depot pattern dominated over the recruitment effects. The significance of the gene expression patterns for classifying the depots and for understanding the developmental background of the depots is discussed, as are the possible regulatory functions of the genes.


Asunto(s)
Aclimatación , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Regulación de la Expresión Génica , Animales , Animales no Consanguíneos , Cámaras de Exposición Atmosférica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Frío , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Especificidad de Órganos , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
J Alzheimers Dis ; 86(1): 173-190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35034905

RESUMEN

BACKGROUND: Alzheimer's disease (AD) has minimally effective treatments currently. High concentrations of resveratrol, a polyphenol antioxidant found in plants, have been reported to affect several AD-related and neuroprotective genes. To address the low bioavailability of resveratrol, we investigated a novel oral formulation of resveratrol, JOTROL™, that has shown increased pharmacokinetic properties compared to non-formulated resveratrol in animals and in humans. OBJECTIVE: We hypothesized that equivalent doses of JOTROL, compared to non-formulated resveratrol, would result in greater brain exposure to resveratrol, and more efficacious responses on AD biomarkers. METHODS: For sub-chronic reversal studies, 15-month-old male triple transgenic (APPSW/PS1M146V/TauP301L; 3xTg-AD) AD mice were treated orally with vehicle or 50 mg/kg JOTROL for 36 days. For prophylactic studies, male and female 3xTg-AD mice were similarly administered vehicle, 50 mg/kg JOTROL, or 50 mg/kg resveratrol for 9 months starting at 4 months of age. A behavioral battery was run, and mRNA and protein from brain and blood were analyzed for changes in AD-related gene and protein expression. RESULTS: JOTROL displays significantly increased bioavailability over non-formulated resveratrol. Treatment with JOTROL resulted in AD-related gene expression changes (Adam10, Bace1, Bdnf, Psen1) some of which were brain region-dependent and sex-specific, as well as changes in inflammatory gene and cytokine levels. CONCLUSION: JOTROL may be effective as a prophylaxis and/or treatment for AD through increased expression and/or activation of neuroprotective genes, suppression of pro-inflammatory genes, and regulation of central and peripheral cytokine levels.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Animales , Ácido Aspártico Endopeptidasas , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Resveratrol , Proteínas tau/metabolismo
16.
Elife ; 112022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35037854

RESUMEN

Insulin resistance (IR) contributes to the pathophysiology of diabetes, dementia, viral infection, and cardiovascular disease. Drug repurposing (DR) may identify treatments for IR; however, barriers include uncertainty whether in vitro transcriptomic assays yield quantitative pharmacological data, or how to optimise assay design to best reflect in vivo human disease. We developed a clinical-based human tissue IR signature by combining lifestyle-mediated treatment responses (>500 human adipose and muscle biopsies) with biomarkers of disease status (fasting IR from >1200 biopsies). The assay identified a chemically diverse set of >130 positively acting compounds, highly enriched in true positives, that targeted 73 proteins regulating IR pathways. Our multi-gene RNA assay score reflected the quantitative pharmacological properties of a set of epidermal growth factor receptor-related tyrosine kinase inhibitors, providing insight into drug target specificity; an observation supported by deep learning-based genome-wide predicted pharmacology. Several drugs identified are suitable for evaluation in patients, particularly those with either acute or severe chronic IR.


Developing a new drug that is both safe and effective is a complex and expensive endeavor. An alternative approach is to 'repurpose' existing, safe compounds ­ that is, to establish if they could treat conditions others than the ones they were initially designed for. To achieve this, methods that can predict the activity of thousands of established drugs are necessary. These approaches are particularly important for conditions for which it is hard to find promising treatment. This includes, for instance, heart failure, dementia and other diseases that are linked to the activity of the hormone insulin becoming modified throughout the body, a defect called insulin resistance. Unfortunately, it is difficult to model the complex actions of insulin using cells in the lab, because they involve intricate networks of proteins, tissues and metabolites. Timmons et al. set out to develop a way to better assess whether a drug could be repurposed to treat insulin resistance. The aim was to build a biological signature of the disease in multiple human tissues, as this would help to make the findings more relevant to the clinic. This involved examining which genes were switched on or off in thousands of tissue samples from patients with different degrees of insulin resistance. Importantly, some of the patients had their condition reversed through lifestyle changes, while others did not respond well to treatment. These 'non-responders' provided crucial new clues to screen for active drugs. Carefully piecing the data together revealed the molecules and pathways most related to the severity of insulin resistance. Cross-referencing these results with the way existing drugs act on gene activity, highlighted 138 compounds that directly bind 73 proteins responsible for regulating insulin resistance pathways. Some of the drugs identified are suitable for short-term clinical studies, and it may even be possible to rank similar compounds based on their chemical activity. Beyond giving a glimpse into the complex molecular mechanisms of insulin resistance in humans, Timmons et al. provide a fresh approach to how drugs could be repurposed, which could be adapted to other conditions.


Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades Metabólicas/tratamiento farmacológico , Tejido Adiposo/metabolismo , Biomarcadores/metabolismo , Humanos , Resistencia a la Insulina , Enfermedades Metabólicas/genética , Músculos/metabolismo , Transcriptoma
17.
Eur J Heart Fail ; 24(6): 1009-1019, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35570197

RESUMEN

AIMS: Chronic heart failure (CHF) is a systemic syndrome with a poor prognosis and a need for novel therapies. We investigated whether whole blood transcriptomic profiling can provide new mechanistic insights into cardiovascular (CV) mortality in CHF. METHODS AND RESULTS: Transcriptome profiles were generated at baseline from 944 CHF patients from the BIOSTAT-CHF study, of whom 626 survived and 318 died from a CV cause during a follow-up of 21 months. Multivariable analysis, including adjustment for cell count, identified 1153 genes (6.5%) that were differentially expressed between those that survived or died and strongly related to a validated clinical risk score for adverse prognosis. The differentially expressed genes mainly belonged to five non-redundant pathways: adaptive immune response, proteasome-mediated ubiquitin-dependent protein catabolic process, T-cell co-stimulation, positive regulation of T-cell proliferation, and erythrocyte development. These five pathways were selectively related (RV coefficients >0.20) with seven circulating protein biomarkers of CV mortality (fibroblast growth factor 23, soluble ST2, adrenomedullin, hepcidin, pentraxin-3, WAP 4-disulfide core domain 2, and interleukin-6) revealing an intricate relationship between immune and iron homeostasis. The pattern of survival-associated gene expression matched with 29 perturbagen-induced transcriptome signatures in the iLINCS drug-repurposing database, identifying drugs, approved for other clinical indications, that were able to reverse in vitro the molecular changes associated with adverse prognosis in CHF. CONCLUSION: Systematic modelling of the whole blood protein-coding transcriptome defined molecular pathways that provide a link between clinical risk factors and adverse CV prognosis in CHF, identifying both established and new potential therapeutic targets.


Asunto(s)
Insuficiencia Cardíaca , Biomarcadores , Enfermedad Crónica , Humanos , Pronóstico , Transcriptoma
18.
J Biol Chem ; 285(10): 7153-64, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20028987

RESUMEN

The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classic white adipose tissue depots under certain physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis in these cells but also a norepinephrine-augmentable UCP1 gene expression in a significant subset of the cells, providing these cells with a genuine thermogenic capacity. However, although functional thermogenic genes are expressed, the cells are devoid of transcripts for the novel transcription factors now associated with classic brown adipocytes (Zic1, Lhx8, Meox2, and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells are not proliferating classic brown adipocytes (adipomyocytes), and these cells therefore constitute a subset of adipocytes ("brite" adipocytes) with a developmental origin and molecular characteristics distinguishing them as a separate class of cells.


Asunto(s)
Adipocitos Marrones/fisiología , Adipocitos Blancos/fisiología , Diferenciación Celular/fisiología , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Termogénesis/fisiología , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Blancos/citología , Adipocitos Blancos/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Epidídimo/citología , Regulación de la Expresión Génica , Hipoglucemiantes/farmacología , Canales Iónicos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Consumo de Oxígeno/fisiología , PPAR gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Rosiglitazona , Tiazolidinedionas/farmacología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Proteína Desacopladora 1 , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
19.
BMC Endocr Disord ; 11: 7, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21426570

RESUMEN

BACKGROUND: Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While components of the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity. METHODS: Several models exist to study adipogenesis in vitro, of which the cell line 3T3-L1 is the most well known, albeit not the most physiologically appropriate. Thus, as an alternative, we produced EXIQON microarray of brown and white primary murine adipocytes (prior to and following differentiation) to yield global profiles of miRNAs. RESULTS: We found 65 miRNAs regulated during in vitro adipogenesis in primary adipocytes. We evaluated the similarity of our responses to those found in non-primary cell models, through literature data-mining. When comparing primary adipocyte profiles, with those of cell lines reported in the literature, we found a high degree of difference in 'adipogenesis' regulated miRNAs suggesting that the model systems may not be accurately representing adipogenesis. The expression of 10 adipogenesis-regulated miRNAs were studied using real-time qPCR and then we selected 5 miRNAs, that showed robust expression, were profiled in subcutaneous adipose tissue obtained from 20 humans with a range of body mass indices (BMI, range = 21-48, and all samples have U133+2 Affymetrix profiles provided). Of the miRNAs tested, mir-21 was robustly expressed in human adipose tissue and positively correlated with BMI (R2 = 0.49, p < 0.001). CONCLUSION: In conclusion, we provide a preliminary analysis of miRNAs associated with primary cell in vitro adipogenesis and demonstrate that the inflammation-associated miRNA, mir-21 is up-regulated in subcutaneous adipose tissue in human obesity. Further, we provide a novel transcriptomics database of EXIQON and Affymetrix adipocyte profiles to facilitate data mining.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA