Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Alzheimers Dement ; 20(3): 2016-2033, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38184788

RESUMEN

INTRODUCTION: Genome-wide association studies link susceptibility to late-onset Alzheimer's disease (LOAD) with EphA1. Sequencing identified a non-synonymous substitution P460L as a LOAD risk variant. Other Ephs regulate vascular permeability and immune cell recruitment. We hypothesized that P460L dysregulates EphA1 receptor activity and impacts neuroinflammation. METHODS: EphA1/P460L receptor activity was assayed in isogenic Human Embryonic Kidney (HEK) cells. Soluble EphA1/P460L (sEphA1/sP460L) reverse signaling in brain endothelial cells was assessed by T-cell recruitment and barrier function assays. RESULTS: EphA1 and P460L were expressed in HEK cells, but membrane and soluble P460L were significantly reduced. Ligand engagement induced Y781 phosphorylation of EphA1 but not P460L. sEphA1 primed brain endothelial cells for increased T-cell recruitment; however, sP460L was less effective. sEphA1 decreased the integrity of the brain endothelial barrier, while sP460L had no effect. DISCUSSION: These findings suggest that P460L alters EphA1-dependent forward and reverse signaling, which may impact blood-brain barrier function in LOAD. HIGHLIGHTS: EphA1-dependent reverse signaling controls recruitment of T cells by brain endothelial cells. EphA1-dependent reverse signaling remodels brain endothelial cell contacts. LOAD-associated P460L variant of EphA1 shows reduced membrane expression and reduced ligand responses. LOAD-associated P460L variant of EphA1 fails to reverse signal to brain endothelial cells.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Barrera Hematoencefálica , Células Endoteliales , Estudio de Asociación del Genoma Completo , Ligandos , Receptor EphA1/metabolismo
2.
Nat Genet ; 35(1): 84-9, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12923531

RESUMEN

Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules. In mice, at least 16 loci are associated with HPS, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to alpha- and beta-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9-11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Asociadas a la Distrofina , Síndrome de Hermanski-Pudlak/genética , Mutación , Animales , Células COS , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Disbindina , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lectinas , Sustancias Macromoleculares , Masculino , Melanosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Persona de Mediana Edad , Datos de Secuencia Molecular , Fosfoproteínas/metabolismo , Unión Proteica
3.
Hum Mutat ; 33(12): 1676-86, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22777675

RESUMEN

Pitt-Hopkins syndrome (PTHS) is a rare developmental disorder associated with severe mental retardation, facial abnormalities, and intermittent hyperventilation. Autosomal dominant PTHS is caused by mutations in the transcription factor 4 (TCF4) gene, whereas NRXN1 and CNTNAP2 mutations are associated with autosomal recessive PTHS. To determine the impact of missense mutations on TCF4 function, we tested a panel of PTHS-associated mutations using a range of quantitative techniques. Mutations in the basic helix-loop-helix (bHLH) domain of TCF4 alter the subnuclear localization of the mutant protein and can attenuate homo- and heterodimer formation in homogenous time-resolved fluorescence (HTRF) assays. By contrast, mutations proximal to the bHLH domain do not alter the location of TCF4 or impair heterodimer formation. In addition, we show that TCF4 can transactivate the NRXN1ß and CNTNAP2 promoters in luciferase assays. Here we find variable, context-specific deficits in the ability of the different PTHS-associated TCF4 mutants to transactivate these promoters when coexpressed with different bHLH transcription factors. These data demonstrate that PTHS-associated missense mutations can have multiple effects on the function of the protein, and suggest that TCF4 may modulate the expression of NRXN1 and CNTNAP2 thereby defining a regulatory network in PTHS.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Hiperventilación/genética , Discapacidad Intelectual/genética , Mutación Missense , Factores de Transcripción/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células COS , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Facies , Genes Reporteros , Células HEK293 , Humanos , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa , Regiones Promotoras Genéticas , Multimerización de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Factor de Transcripción 4 , Factores de Transcripción/metabolismo , Activación Transcripcional
4.
Hum Mol Genet ; 18(13): 2344-58, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19349376

RESUMEN

Mutations in the gene encoding tripartite motif protein 32 (TRIM32) cause two seemingly diverse diseases: limb-girdle muscular dystrophy type 2H (LGMD2H) or sarcotubular myopathy (STM) and Bardet-Biedl syndrome type 11(BBS11). Although TRIM32 is involved in protein ubiquitination, its substrates and the molecular consequences of disease-causing mutations are poorly understood. In this paper, we show that TRIM32 is a widely expressed ubiquitin ligase that is localized to the Z-line in skeletal muscle. Using the yeast two-hybrid system, we found that TRIM32 binds and ubiquitinates dysbindin, a protein implicated in the genetic aetiology of schizophrenia, augmenting its degradation. Small-interfering RNA-mediated knock-down of TRIM32 in myoblasts resulted in elevated levels of dysbindin. Importantly, the LGMD2H/STM-associated TRIM32 mutations, D487N and R394H impair ubiquitin ligase activity towards dysbindin and were mislocalized in heterologous cells. These mutants were able to self-associate and also co-immunoprecipitated with wild-type TRIM32 in transfected cells. Furthermore, the D487N mutant could bind to both dysbindin and its E2 enzyme but was defective in monoubiquitination. In contrast, the BBS11 mutant P130S did not show any biochemical differences compared with the wild-type protein. Our data identify TRIM32 as a regulator of dysbindin and demonstrate that the LGMD2H/STM mutations may impair substrate ubiquitination.


Asunto(s)
Proteínas Portadoras/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Disbindina , Proteínas Asociadas a la Distrofina , Humanos , Ratones , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , Mutación , Unión Proteica , Transporte de Proteínas , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
5.
Schizophr Bull ; 45(6): 1267-1278, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30597088

RESUMEN

Genome-wide association studies have linked common variation in ZNF804A with an increased risk of schizophrenia. However, little is known about the biology of ZNF804A and its role in schizophrenia. Here, we investigate the function of ZNF804A using a variety of complementary molecular techniques. We show that ZNF804A is a nuclear protein that interacts with neuronal RNA splicing factors and RNA-binding proteins including RBFOX1, which is also associated with schizophrenia, CELF3/4, components of the ubiquitin-proteasome system and the ZNF804A paralog, GPATCH8. GPATCH8 also interacts with splicing factors and is localized to nuclear speckles indicative of a role in pre-messenger RNA (mRNA) processing. Sequence analysis showed that GPATCH8 contains ultraconserved, alternatively spliced poison exons that are also regulated by RBFOX proteins. ZNF804A knockdown in SH-SY5Y cells resulted in robust changes in gene expression and pre-mRNA splicing converging on pathways associated with nervous system development, synaptic contact, and cell adhesion. We observed enrichment (P = 1.66 × 10-9) for differentially spliced genes in ZNF804A-depleted cells among genes that contain RBFOX-dependent alternatively spliced exons. Differentially spliced genes in ZNF804A-depleted cells were also enriched for genes harboring de novo loss of function mutations in autism spectrum disorder (P = 6.25 × 10-7, enrichment 2.16) and common variant alleles associated with schizophrenia (P = .014), bipolar disorder and schizophrenia (P = .003), and autism spectrum disorder (P = .005). These data suggest that ZNF804A and its paralogs may interact with neuronal-splicing factors and RNA-binding proteins to regulate the expression of a subset of synaptic and neurodevelopmental genes.


Asunto(s)
Regulación de la Expresión Génica/genética , Factores de Transcripción de Tipo Kruppel/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , ARN Mensajero/metabolismo , Esquizofrenia/genética , Trastorno del Espectro Autista/genética , Trastorno Bipolar/genética , Proteínas CELF/metabolismo , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Musculares/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
J Clin Invest ; 113(9): 1353-63, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15124027

RESUMEN

Eleven studies now report significant associations between schizophrenia and certain haplotypes of single-nucleotide polymorphisms in the gene encoding dysbindin-1 at 6p22.3. Dysbindin-1 is best known as dystrobrevin-binding protein 1 (DTNBP1) and may thus be associated with the dystrophin glycoprotein complex found at certain postsynaptic sites in the brain. Contrary to expectations, however, we found that when compared to matched, nonpsychiatric controls, 73-93% of cases in two schizophrenia populations displayed presynaptic dysbindin-1 reductions averaging 18-42% (P = 0.027-0.0001) at hippocampal formation sites lacking neuronal dystrobrevin (i.e., beta-dystrobrevin). The reductions, which were not observed in the anterior cingulate of the same schizophrenia cases, occurred specifically in terminal fields of intrinsic, glutamatergic afferents of the subiculum, the hippocampus proper, and especially the inner molecular layer of the dentate gyrus (DGiml). An inversely correlated increase in vesicular glutamate transporter-1 (VGluT-1) occurred in DGiml of the same schizophrenia cases. Those changes occurred without evidence of axon terminal loss or neuroleptic effects on dysbindin-1 or VGluT-1. Our findings indicate that presynaptic dysbindin-1 reductions independent of the dystrophin glycoprotein complex are frequent in schizophrenia and are related to glutamatergic alterations in intrinsic hippocampal formation connections. Such changes may contribute to the cognitive deficits common in schizophrenia.


Asunto(s)
Proteínas Portadoras/genética , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Esquizofrenia/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células COS , Proteínas Portadoras/metabolismo , Estudios de Casos y Controles , Chlorocebus aethiops , Disbindina , Proteínas Asociadas a la Distrofina , Femenino , Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Neuronas/patología , Pennsylvania , Terminales Presinápticos/metabolismo , Esquizofrenia/genética , Razón de Masculinidad
7.
Sci Rep ; 7(1): 6312, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740084

RESUMEN

The Cardiomyopathy-associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on different chromosomes. Using immunoaffinity purification and mass spectrometry we show that minispryn co-purifies with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle.


Asunto(s)
Proteínas Portadoras/genética , Clonación Molecular/métodos , Proteínas Musculares/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Células COS , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Cromatografía de Afinidad , Duplicación Cromosómica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Espectrometría de Masas , Ratones , Proteínas Musculares/metabolismo , Retículo Sarcoplasmático/metabolismo
8.
Schizophr Bull ; 36(3): 443-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20421335

RESUMEN

Genome-wide association studies allied with the identification of rare copy number variants have provided important insights into the genetic risk factors for schizophrenia. Recently, a meta-analysis of several genome-wide association studies found, in addition to several other markers, a single nucleotide polymorphism in intron 4 of the TCF4 gene that was associated with schizophrenia. TCF4 encodes a basic helix-loop-helix transcription factor that interacts with other transcription factors to activate or repress gene expression. TCF4 mutations also cause Pitt-Hopkins Syndrome, an autosomal-dominant neurodevelopmental disorder associated with severe mental retardation. Variants in the TCF4 gene may therefore be associated with a range of neuropsychiatric phenotypes, including schizophrenia. Recessive forms of Pitt-Hopkins syndrome are caused by mutations in NRXN1 and CNTNAP2. Interestingly, NRXN1 deletions have been reported in schizophrenia, whereas CNTNAP2 variants are associated with several neuropsychiatric phenotypes. These data suggest that TCF4, NRXN1, and CNTNAP2 may participate in a biological pathway that is altered in patients with schizophrenia and other neuropsychiatric disorders.


Asunto(s)
Anomalías Múltiples/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Esquizofrenia/genética , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/fisiopatología , Alelos , Animales , Encéfalo/fisiopatología , Aberraciones Cromosómicas , Deleción Cromosómica , Análisis Mutacional de ADN , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/fisiopatología , Genes Dominantes/genética , Genes Recesivos/genética , Tamización de Portadores Genéticos , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/fisiopatología , Trastornos del Desarrollo del Lenguaje/diagnóstico , Trastornos del Desarrollo del Lenguaje/fisiopatología , Fenotipo , Esquizofrenia/fisiopatología , Síndrome , Factor de Transcripción 4
9.
Ann Med ; 41(5): 344-59, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19172427

RESUMEN

While the function of dystrophin in muscle disease has been thoroughly investigated, dystrophin and associated proteins also have important roles in the central nervous system. Many patients with Duchenne and Becker muscular dystrophies (D/BMD) have cognitive impairment, learning disability, and an increased incidence of some neuropsychiatric disorders. Accordingly, dystrophin and members of the dystrophin-associated glycoprotein complex (DGC) are found in the brain where they participate in macromolecular assemblies that anchor receptors to specialized sites within the membrane. In neurons, dystrophin and the DGC participate in the postsynaptic clustering and stabilization of some inhibitory GABAergic synapses. During development, alpha-dystroglycan functions as an extracellular matrix receptor controlling, amongst other things, neuronal migration in the developing cortex and cerebellum. Several types of congenital muscular dystrophy caused by impaired alpha-dystroglycan glycosylation cause neuronal migration abnormalities and mental retardation. In glial cells, the DGC is involved in the organization of protein complexes that target water-channels to the plasma membrane. Finally, mutations in the gene encoding epsilon-sarcoglycan cause the neurogenic movement disorder, myoclonus-dystonia syndrome implicating epsilon-sarcoglycan in dopaminergic neurotransmission. In this review we describe the recent progress in defining the role of the DGC and associated proteins in the brain.


Asunto(s)
Sistema Nervioso Central/metabolismo , Distonía/metabolismo , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Discapacidad Intelectual/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Distrofias Musculares/metabolismo , Neurobiología/métodos , Animales , Humanos
10.
J Biol Chem ; 279(11): 10450-8, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-14688250

RESUMEN

Dysbindin is a coiled-coil-containing protein that was initially identified in a screen for dystrobrevin-interacting proteins. Recently, dysbindin has been shown to be involved in the biogenesis of lysosome-related organelles and is also a major schizophrenia susceptibility factor. Although dysbindin has been implicated in a number of different cellular processes, little is known about its function. To determine the function of dysbindin in muscle, we performed a yeast two-hybrid screen to identify potential interacting proteins. Here we show that dysbindin binds to a novel 413-kDa protein, myospryn, which is expressed in cardiac and skeletal muscle. The transcript encoding myospryn encompasses genethonin-3, a transcript that is down-regulated in muscle from Duchenne muscular dystrophy patients and stretch-responsive protein 553, which is up-regulated in experimental muscle hypertrophy. The C terminus of myospryn contains BBC, FN3, and SPRY domains in a configuration reminiscent of the tripartite motif protein family, as well as the dysbindin-binding site and a region mediating self-association. Dysbindin and myospryn co-immunoprecipitate from muscle extracts and are extensively co-localized. These data demonstrate for the first time that there are tissue-specific ligands for dysbindin that may play important roles in the different disease states involving this protein.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Proteínas Musculares/química , Proteínas Musculares/fisiología , Músculos/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Proteínas Portadoras/metabolismo , ADN Complementario/metabolismo , Regulación hacia Abajo , Disbindina , Proteínas Asociadas a la Distrofina , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Musculares/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Distribución Tisular , Transfección , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba , beta-Galactosidasa/metabolismo
11.
J Biol Chem ; 278(39): 37545-52, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12837758

RESUMEN

Recently, evidence has emerged that heptaspanning membrane or G protein-coupled receptors may be linked to intracellular proteins identified as regulators of receptor anchoring and signaling. Using a yeast two-hybrid screen, we identified alpha-actinin, a major F-actin-cross-linking protein, as a binding partner for the C-terminal domain of the adenosine A2A receptor (A2AR). Colocalization, co-immunoprecipitation, and pull-down experiments showed a close and specific interaction between A2AR and alpha-actinin in transfected HEK-293 cells and also in rat striatal tissue. A2AR activation by agonist induced the internalization of the receptor by a process that involved rapid beta-arrestin translocation from the cytoplasm to the cell surface. In the subsequent receptor traffic from the cell surface, the role of actin organization was shown to be crucial in transiently transfected HEK-293 cells, as actin depolymerization by cytochalasin D prevented its agonist-induced internalization. A2ADeltaCTR, a mutant version of A2AR that lacks the C-terminal domain and does not interact with alpha-actinin, was not able to internalize when activated by agonist. Interestingly, A2ADeltaCTR did not show aggregation or clustering after agonist stimulation, a process readily occurring with the wild-type receptor. These findings suggest an alpha-actinin-dependent association between the actin cytoskeleton and A2AR trafficking.


Asunto(s)
Actinina/química , Receptor de Adenosina A2A/química , Actinina/fisiología , Actinas/fisiología , Animales , Células Cultivadas , Citocalasina D/farmacología , Endocitosis , Humanos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Transfección , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA