Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 15(25): 5138-5146, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31190040

RESUMEN

The controlled aggregation of organic π-conjugated molecular semiconductors within a host material (often a polymer) is important for obtaining appropriate organic film morphologies and mechanical properties for optoelectronic applications. In this study, we demonstrate how we have challenged the twisting effect in perylene diimide dimers, which is known to hinder their aggregation. Indeed, a twisted N-annulated perylene diimide dimer (tPDI2N-EH) can be induced to form crystalline aggregates within a host poly-3-hexylthiophene (P3HT) polymer matrix using solution processing. The size of the aggregates can be controlled using varying amounts of the common processing solvent additive 1,8-diiodooctane (DIO) during film formation, by changing the concentration of the molecule within the polymer film, and by adjusting the film drying time. A combination of UV-visible spectroscopy, fluorescence microscopy, cross-polarized light microscopy, and atomic force microscopy were used to characterize the organic films.

2.
ACS Appl Mater Interfaces ; 12(39): 43684-43693, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32946216

RESUMEN

Efficient organic photovoltaics (OPVs) based on slot-die-coated (SD) ternary blends were developed for low-intensity indoor light harvesting. For active layers processed in air and from eco-friendly solvents, our device performances (under 1 sun and low light intensity) are the highest reported values for fluoro-dithiophenyl-benzothiadiazole donor polymer-based OPVs. The N-annulated perylene diimide dimer acceptor was incorporated into a blend of donor polymer (FBT) and fullerene acceptor (PC61BM) to give ternary bulk heterojunction blends. SD ternary-based devices under 1 sun illumination showed enhanced power conversion efficiency (PCE) from 6.8 to 7.7%. We observed enhancement in the short-circuit current density and open-circuit voltage of the devices. Under low light intensity light-emitting device illumination (ca. 2000 lux), the ternary-based devices achieved a PCE of 14.0% and a maximum power density of 79 µW/cm2 compared to a PCE of 12.0% and a maximum power density of 68 µW/cm2 for binary-based devices. Under the same illumination conditions, the spin-coated (SC) devices showed a PCE of 15.5% and a maximum power density of 88 µW/cm2. Collectively, these results demonstrate the exceptional promise of a SD ternary blend system for indoor light harvesting and the need to optimize active layers based on industry-relevant coating approaches toward mini modules.

3.
Sci Rep ; 10(1): 3262, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094356

RESUMEN

Usually considered as a byproduct, the 1,6-dibrominated PDI has rarely been functionalized for the preparation of electro-active conjugated molecules, particularly in the field of organic photovoltaics. In light of the literature, one can ask oneself: Does a 1,7-isomer based functional molecule systematically perform better than its 1,6-analogue? To answer this question, we report herein the synthesis and direct comparison of two indeno[1,2-b]thiophene (IDT) end-capped perylene diimide regioisomers (PDI) (1,6 and 1,7) used as non-fullerene acceptors in organic solar cells. It turned out that in our case, ie, when blended with the well-known PTB7-Th donor polymer, higher performance was reached for devices made with the 1,6-analogue.

4.
ACS Appl Mater Interfaces ; 11(42): 39010-39017, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547651

RESUMEN

Herein, we investigate the role of processing solvent additives on the formation of polymer-perylene diimide bulk-heterojunction active layers for organic photovoltaics using both spin-coating and slot-die coating methods. We compare the effect of 1,8-diiodooctane (DIO) and diphenyl ether (DPE) as solvent additives on the aggregation behavior of the non-fullerene acceptor, N-annulated perylene diimide dimer (tPDI2N-EH), in neat films and blended films with the benzodithiophene-quinoxaline (BDT-QX, QX-3) donor polymer, processed from toluene in air. DIO processing crystallizes the tPDI2N-EH acceptor and leads to the decreased solar cell performance. DPE processing has a more subtle effect on the bulk-heterojunction morphology and leads to an improved solar cell performance. A comparison of the spin-coating vs slot-die coating methods shows that the effect of DPE is prominent for the slot-die coated active layers. While similar device power conversion efficiencies are achieved with active layers coated with both methods (ca. 7.3% vs 6.5%), the use of DPE improves the film quality when the slot-die coating method is employed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA