Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1857(7): 991-1000, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26820434

RESUMEN

This review discusses the functional properties of mitochondrial Complex I originating from its presence in an assembled form as a supercomplex comprising Complex III and Complex IV in stoichiometric ratios. In particular several lines of evidence are presented favouring the concept that electron transfer from Complex I to Complex III is operated by channelling of electrons through Coenzyme Q molecules bound to the supercomplex, in contrast with the hypothesis that the transfer of reducing equivalents from Complex I to Complex III occurs via random diffusion of the Coenzyme Q molecules in the lipid bilayer. Furthermore, another property provided by the supercomplex assembly is the control of generation of reactive oxygen species by Complex I. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/enzimología , Especies Reactivas de Oxígeno/síntesis química , Ubiquinona/química , Ubiquinona/metabolismo , Animales , Transporte de Electrón , Complejo I de Transporte de Electrón/ultraestructura , Activación Enzimática , Humanos , Modelos Químicos , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Oxidación-Reducción , Conformación Proteica , Bombas de Protones/química , Bombas de Protones/ultraestructura , Relación Estructura-Actividad , Ubiquinona/ultraestructura
2.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38272025

RESUMEN

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/metabolismo , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Estudios Retrospectivos , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Ubiquinona/metabolismo , Complejo I de Transporte de Electrón/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
3.
Life (Basel) ; 11(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804034

RESUMEN

Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA