Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 189(1): 112-128, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35166847

RESUMEN

Reactive oxygen species (ROS) are generated in electron transport processes of living organisms in oxygenic environments. Chloroplasts are plant bioenergetics hubs where imbalances between photosynthetic inputs and outputs drive ROS generation upon changing environmental conditions. Plants have harnessed various site-specific thylakoid membrane ROS products into environmental sensory signals. Our current understanding of ROS production in thylakoids suggests that oxygen (O2) reduction takes place at numerous components of the photosynthetic electron transfer chain (PETC). To refine models of site-specific O2 reduction capacity of various PETC components in isolated thylakoids of Arabidopsis thaliana, we quantified the stoichiometry of oxygen production and consumption reactions associated with hydrogen peroxide (H2O2) accumulation using membrane inlet mass spectrometry and specific inhibitors. Combined with P700 spectroscopy and electron paramagnetic resonance spin trapping, we demonstrate that electron flow to photosystem I (PSI) is essential for H2O2 accumulation during the photosynthetic linear electron transport process. Further leaf disc measurements provided clues that H2O2 from PETC has a potential of increasing mitochondrial respiration and CO2 release. Based on gas exchange analyses in control, site-specific inhibitor-, methyl viologen-, and catalase-treated thylakoids, we provide compelling evidence of no contribution of plastoquinone pool or cytochrome b6f to chloroplastic H2O2 accumulation. The putative production of H2O2 in any PETC location other than PSI is rapidly quenched and therefore cannot function in H2O2 translocation to another cellular location or in signaling.


Asunto(s)
Arabidopsis , Tilacoides , Arabidopsis/metabolismo , Transporte de Electrón , Electrones , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tilacoides/metabolismo
2.
Plant Cell Physiol ; 62(1): 80-91, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33165601

RESUMEN

Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions, including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids and was associated with membranes. Lipid components and cold-induced reduction in PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with the modification in membrane lipid composition.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Membrana Celular/metabolismo , Proteínas de Cloroplastos/fisiología , Respuesta al Choque por Frío , Lípidos de la Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/química , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Lípidos de la Membrana/análisis , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolípidos/análisis , Fosfolípidos/metabolismo
3.
Physiol Plant ; 166(1): 211-225, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30578537

RESUMEN

In natural growth habitats, plants face constant, unpredictable changes in light conditions. To avoid damage to the photosynthetic apparatus on thylakoid membranes in chloroplasts, and to avoid wasteful reactions, it is crucial to maintain a redox balance both within the components of photosynthetic electron transfer chain and between the light reactions and stromal carbon metabolism under fluctuating light conditions. This requires coordinated function of the photoprotective and regulatory mechanisms, such as non-photochemical quenching (NPQ) and reversible redistribution of excitation energy between photosystem II (PSII) and photosystem I (PSI). In this paper, we show that the NADPH-dependent chloroplast thioredoxin system (NTRC) is involved in the control of the activation of these mechanisms. In plants with altered NTRC content, the strict correlation between lumenal pH and NPQ is partially lost. We propose that NTRC contributes to downregulation of a slow-relaxing constituent of NPQ, whose induction is independent of lumenal acidification. Additionally, overexpression of NTRC enhances the ability to adjust the excitation balance between PSII and PSI, and improves the ability to oxidize the electron transfer chain during changes in light conditions. Thiol regulation allows coupling of the electron transfer chain to the stromal redox state during these changes.


Asunto(s)
Cloroplastos/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , NADP/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
4.
J Nanosci Nanotechnol ; 18(1): 529-537, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29768878

RESUMEN

Enhancing the biocompatibility profiles including cell attachment, growth, and viability and mechanical properties of designed synthetic scaffolds have an essential role in tissue engineering applications. Polymer blending is one of the most effective methods for providing new anticipated biomaterials for tissue scaffolds. Here, the blend solution of the different mass weight ratio of polycaprolactone (PCL) to human serum albumin (HSA) was subjected to fabricate nanocomposite spider-web-like membranes using electrospinning process. The physicochemical aspects of fabricated membranes had been characterized by a different state of techniques like that of scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), contact angle meter and universal testing machine. FE-SEM images revealed that all PCL/HSA mats were composed of interlinked nano-nets along with conventional electrospun fibers while nano-nets were not found for pristine PCL mat. Moreover, composite membranes exhibited improved water absorbability, enhanced biodegradation compared to pristine PCL membrane and had much better mechanical properties (tensile strength increased by up to 3-fold, Young's modulus by 2-fold). The cell attachment and proliferation tests were carried by culturing Mc3T3-E1 (pre-osteoblasts) with the designated nanofibrous membranes. The hybrid nanofibers exhibited extraordinary support for the adhesion and proliferation of cells when compared to the pristine PCL membrane. These results indicate that the nano-nets supported PCL/HSA scaffolds can be promising for tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Nanofibras , Ingeniería de Tejidos , Proliferación Celular , Humanos , Poliésteres , Espectroscopía Infrarroja por Transformada de Fourier , Andamios del Tejido
5.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1085-1098, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28216046

RESUMEN

BACKGROUND: Iron-sulfur (Fe-S) clusters are protein-bound cofactors associated with cellular electron transport and redox sensing, with multiple specific functions in oxygen-evolving photosynthetic cyanobacteria. The aim here was to elucidate protein-level effects of the transcriptional repressor SufR involved in the regulation of Fe-S cluster biogenesis in the cyanobacterium Synechocystis sp. PCC 6803. METHODS: The approach was to quantitate 94 pre-selected target proteins associated with various metabolic functions using SRM in Synechocystis. The evaluation was conducted in response to sufR deletion under different iron conditions, and complemented with EPR analysis on the functionality of the photosystems I and II as well as with RT-qPCR to verify the effects of SufR also on transcript level. RESULTS: The results on both protein and transcript levels show that SufR acts not only as a repressor of the suf operon when iron is available but also has other direct and indirect functions in the cell, including maintenance of the expression of pyruvate:ferredoxin oxidoreductase NifJ and other Fe-S cluster proteins under iron sufficient conditions. Furthermore, the results imply that in the absence of iron the suf operon is repressed by some additional regulatory mechanism independent of SufR. CONCLUSIONS: The study demonstrates that Fe-S cluster metabolism in Synechocystis is stringently regulated, and has complex interactions with multiple primary functions in the cell, including photosynthesis and central carbon metabolism. GENERAL SIGNIFICANCE: The study provides new insight into the regulation of Fe-S cluster biogenesis via suf operon, and the associated wide-ranging protein-level changes in photosynthetic cyanobacteria.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Synechocystis/metabolismo , Transporte de Electrón/fisiología , Operón/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
6.
ACS Chem Neurosci ; 15(6): 1157-1168, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445956

RESUMEN

Phytic acid (PA) has been reported to possess anti-inflammatory and antioxidant properties that are critical for neuroprotection in neuronal disorders. This raises the question of whether PA can effectively protect sensory neurons against chemotherapy-induced peripheral neuropathy (CIPN). Peripheral neuropathy is a dose-limiting side effect of chemotherapy treatment often characterized by severe and abnormal pain in hands and feet resulting from peripheral nerve degeneration. Currently, there are no effective treatments available that can prevent or cure peripheral neuropathies other than symptomatic management. Herein, we aim to demonstrate the neuroprotective effects of PA against the neurodegeneration induced by the chemotherapeutics cisplatin (CDDP) and oxaliplatin. Further aims of this study are to provide the proposed mechanism of PA-mediated neuroprotection. The neuronal protection and survivability against CDDP were characterized by axon length measurements and cell body counting of the dorsal root ganglia (DRG) neurons. A cellular phenotype study was conducted microscopically. Intracellular reactive oxygen species (ROS) was estimated by fluorogenic probe dichlorofluorescein. Likewise, mitochondrial membrane potential (MMP) was assessed by fluorescent MitoTracker Orange CMTMRos. Similarly, the mitochondria-localized superoxide anion radical in response to CDDP with and without PA was evaluated. The culture of primary DRG neurons with CDDP reduced axon length and overall neuronal survival. However, cotreatment with PA demonstrated that axons were completely protected and showed increased stability up to the 45-day test duration, which is comparable to samples treated with PA alone and control. Notably, PA treatment scavenged the mitochondria-specific superoxide radicals and overall intracellular ROS that were largely induced by CDDP and simultaneously restored MMP. These results are credited to the underlying neuroprotection of PA in a platinum-treated condition. The results also exhibited that PA had a synergistic anticancer effect with CDDP in ovarian cancer in vitro models. For the first time, PA's potency against CDDP-induced PN is demonstrated systematically. The overall findings of this study suggest the application of PA in CIPN prevention and therapeutic purposes.


Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Humanos , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Ganglios Espinales , Potencial de la Membrana Mitocondrial , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/metabolismo , Ácido Fítico/farmacología , Ácido Fítico/metabolismo , Ácido Fítico/uso terapéutico , Platino (Metal)/farmacología , Platino (Metal)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo
7.
iScience ; 27(3): 109052, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375222

RESUMEN

Electrical stimulation (ESTIM) has shown to be an effective symptomatic treatment to treat pain associated with peripheral nerve damage. However, the neuroprotective mechanism of ESTIM on peripheral neuropathies is still unknown. In this study, we identified that ESTIM has the ability to enhance mitochondrial trafficking as a neuroprotective mechanism against chemotherapy-induced peripheral neuropathies (CIPNs). CIPN is a debilitating and painful sequalae of anti-cancer chemotherapy treatment which results in degeneration of peripheral nerves. Mitochondrial dynamics were analyzed within axons in response to two different antineoplastic mechanisms by chemotherapy drug treatments paclitaxel and oxaliplatin in vitro. Mitochondrial trafficking response to chemotherapy drug treatment was observed to decrease in conjunction with degeneration of distal axons. Using low-frequency ESTIM, we observed enhanced mitochondrial trafficking to be a neuroprotective mechanism against CIPN. This study confirms ESTIM enhances regeneration of peripheral nerves by increased mitochondrial trafficking.

8.
Nat Plants ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271942

RESUMEN

The photosynthetic electron flux from photosystem I (PSI) is mainly directed to NADP+ and CO2 fixation, but a fraction is always shared between alternative and cyclic electron transport. Although the electron transfer from P700 to ferredoxin, via phylloquinone and the FeSX, FeSB and FeSA clusters, is well characterized, the regulatory role of these redox intermediates in the delivery of electrons from PSI to NADP+, alternative and cyclic electron transport under environmental stress remains elusive. Here we provide evidence for sequential damage to PSI FeS clusters under high light and subsequent slow recovery under low light in Arabidopsis thaliana. Wild-type plants showed 10-35% photodamage to their FeSA/B clusters with increasing high-light duration, without much effect on P700 oxidation capacity, FeSX function or CO2 fixation rate, and without additional oxygen consumption (O2 photoreduction). Parallel FeSA/B cluster damage in the pgr5 mutant was more pronounced at 50-85%, probably due to weak photosynthetic control and low non-photochemical quenching. Such severe electron pressure on PSI was also shown to damage the FeSX clusters, with a concomitant decrease in P700 oxidation capacity and a decrease in thylakoid-bound ferredoxin in the pgr5 mutant. The results from wild-type and pgr5 plants reveal controlled damage of PSI FeS clusters under high light. In wild-type plants, this favours electron transport to linear over alternative pathways by intact PSI centres, thereby preventing reactive oxygen species production and probably promoting harmless charge recombination between P700+ and FeSX- as long as the majority of FeSA/B clusters remain functional.

9.
J Bioenerg Biomembr ; 45(6): 551-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23934145

RESUMEN

In this study, electron paramagnetic resonance spin-trapping spectroscopy was used to study the light-induced production of superoxide anion (O2 (•-)) and carbon-centered (R(•)) radicals by Photosystem II (PSII). It is evidenced here that exposure of PSII membranes to high light (2,000 µmol photons m(-2) s(-1)) or heat (47 °C) treatments prior to the illumination suppressed O2 (•-) production, while R(•) was formed. Formation of R(•) in the both high light- and heat-treated PSII membranes was enhanced by DCMU. Removal of molecular oxygen by glucose/glucose oxidase/catalase system and O2 (•-) scavenging by exogenous superoxide dismutase completely suppressed carbon-centered radical formation. It is proposed here that the oxidation of polyunsaturated fatty acids and amino acids by O2 (•-) on the electron acceptor side of PSII results in the formation of R(•), known to initiate a cascade reaction leading to the lipid peroxidation and protein degradation, respectively.


Asunto(s)
Radicales Libres/metabolismo , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Detección de Spin/métodos , Superóxidos/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Luz , Oxidación-Reducción , Oxígeno/química , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/química , Spinacia oleracea , Superóxidos/química
10.
Life Sci ; 334: 122219, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907151

RESUMEN

AIMS: Chemotherapy induced peripheral neuropathy (CIPN) is a common side effect seen in patients who have undergone most chemotherapy treatments to which there are currently no treatment methods. CIPN has been shown to cause axonal degeneration leading to Peripheral Neuropathy (PN), which can lead to major dosage reduction and may prevent further chemotherapy treatment due to oftentimes debilitating pain. Previously, we have determined the site-specific action of Paclitaxel (PTX), a microtubule targeting agent, as well as the neuroprotective effect of Fluocinolone Acetonide (FA) against Paclitaxel Induced Peripheral Neuropathy (PIPN). MAIN METHODS: Mitochondrial trafficking analysis was determined for all sample sets, wherein FA showed enhanced anterograde (axonal) mitochondrial trafficking leading to neuroprotective effects for all samples. KEY FINDINGS: Using this system, we demonstrate that PTX, Monomethyl auristatin E (MMAE), and Vincristine (VCR), are toxic at clinically prescribed levels when treated focally to axons. However, Cisplatin (CDDP) was determined to have a higher toxicity when treated to cell bodies. Although having different targeting mechanisms, the administration of FA was determined to have a significant neuroprotective effect for against all chemotherapy drugs tested. SIGNIFICANCE: This study identifies key insights regarding site of action and neuroprotective strategies to further development as potential therapeutics against CIPN. FA was treated alongside each chemotherapy drug to identify the neuroprotective effect against CIPN, where FA was found to be neuroprotective for all drugs tested. This study found that treatment with FA led to an enhancement in the anterograde movement of mitochondria based on fluorescent imaging.


Asunto(s)
Antineoplásicos , Fármacos Neuroprotectores , Enfermedades del Sistema Nervioso Periférico , Humanos , Preparaciones Farmacéuticas , Fármacos Neuroprotectores/efectos adversos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/prevención & control , Paclitaxel/efectos adversos , Cisplatino/efectos adversos , Mitocondrias , Antineoplásicos/efectos adversos
11.
ACS Chem Neurosci ; 14(11): 2208-2216, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37167105

RESUMEN

Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) is a debilitating health condition which is a result of degeneration of peripheral nerves found in extremities. Currently, there are no established treatment methods that can prevent or protect from PIPN. Fluocinolone acetonide (FA) has been recently identified as a potential candidate for protection from PIPN. However, the fundamental mechanism of action is still unknown. In this study, we showed that enhanced anterograde mitochondrial movement in dorsal root ganglion (DRG) cells has a major role in FA-mediated neuroprotection in PIPN. In this study, cells were treated with PTX or FA along with their combination followed by mitochondrial fluorescence staining. Somal (proximal) and axonal (distal) mitochondria were selectively stained using a microfluidic compartmentalized chamber with different MitoTrackers blue and red, respectively, which we termed, the two-color staining approach. Results revealed that axons were protected from degeneration by the PTX effect when treated along with FA. PTX exposure alone resulted in low mitochondrial mobility in DRG cells. However, cotreatment with PTX and FA showed significant enhancement of anterograde trafficking of somal (proximal) mitochondria to distal axons. Similarly, cotreatment with FA restored mitochondrial mobility significantly. Overall, this study affirms that increasing mitochondrial recruitment into the axon by cotreatment with FA can be a worthwhile strategy to protect or prevent PIPN. The proposed two-color staining approach can be extended to study trafficking for other neuron-specific subcellular organelles.


Asunto(s)
Paclitaxel , Enfermedades del Sistema Nervioso Periférico , Humanos , Paclitaxel/toxicidad , Fluocinolona Acetonida/efectos adversos , Neuroprotección , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/prevención & control , Mitocondrias
12.
Exp Neurol ; 367: 114461, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295544

RESUMEN

Brain organoids are 3D cytoarchitectures resembling the embryonic human brain. This review focuses on current advancements in biomedical engineering methods to develop organoids such as pluripotent stem cells assemblies, quickly aggregated floating culture, hydrogel suspension, microfluidic systems (both photolithography and 3D printing), and brain organoids-on-a-chip. These methods have the potential to create a large impact on neurological disorder studies by creating a model of the human brain investigating pathogenesis and drug screening for individual patients. 3D brain organoid cultures mimic not only features of patients' unknown drug reactions, but also early human brain development at cellular, structural, and functional levels. The challenge of current brain organoids lies in the formation of distinct cortical neuron layers, gyrification, and the establishment of complex neuronal circuitry, as they are critically specialized, developmental aspects. Furthermore, recent advances such as vascularization and genome engineering are in development to overcome the barrier of neuronal complexity. Future technology of brain organoids is needed to improve tissue cross-communication, body axis simulation, cell patterning signals, and spatial-temporal control of differentiation, as engineering methods discussed in this review are rapidly evolving.


Asunto(s)
Ingeniería Biomédica , Organoides , Humanos , Ingeniería de Tejidos/métodos , Encéfalo/patología , Tecnología
13.
Bioengineering (Basel) ; 9(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36290530

RESUMEN

Despite a significant advance in the pathophysiological understanding of peripheral nerve damage, the successful treatment of large nerve defects remains an unmet medical need. In this article, axon growth guidance for peripheral nerve regeneration was systematically reviewed and discussed mainly from the engineering perspective. In addition, the common approaches to surgery, bioengineering approaches to emerging technologies such as optogenetic stimulation and magnetic stimulation for functional recovery were discussed, along with their pros and cons. Additionally, clear future perspectives of axon guidance and nerve regeneration were addressed.

14.
Membranes (Basel) ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36363644

RESUMEN

Agricultural waste-based cellulose fibers have gained significant interest for a myriad of applications. Grewia optiva (G. optiva), a plant species, has been widely used for feeding animals, and the small branches' bark is used for making rope. Herein, we have extracted cellulose fibers from the bark of G. optiva species via chemical treatments (including an alkaline treatment and bleaching). The gravimetric analysis revealed that the bark of G. Optiva contains cellulose (63.13%), hemicellulose (13.52%), lignin (15.13%), and wax (2.8%). Cellulose microfibre (CMF) has been synthesized from raw fibre via chemical treatment methods. The obtained cellulose fibers were crosslinked and employed as the matrix to encapsulate the bioactive plant extracts derived from the root of Catharanthus roseus (C. roseus). The microscopic images, XRD, FTIR, and antibacterial/antioxidant activity confirmed the encapsulation of natural extracts in the cellulose microfiber. The microscopic images revealed that the encapsulation of the natural extracts slightly increased the fiber's diameter. The XRD pattern showed that the extracted cellulose microfiber had an average crystalline size of 2.53 nm with a crystalline index of 30.4% compared to the crystalline size of 2.49 nm with a crystalline index of 27.99% for the plant extract incorporated membrane. The water uptake efficiency of the synthesized membrane increased up to 250%. The antimicrobial activity of the composite (the CMF-E membrane) was studied via the zone inhibition against gram-positive and gram-negative bacteria, and the result indicated high antibacterial activity. This work highlighted G. optiva-derived cellulose microfiber as an optimum substrate for antimicrobial scaffolds. In addition, this paper first reports the antimicrobial/antioxidant behavior of the composite membrane of the C. roseus extract blended in the G. optiva microfiber. This work revealed the potential applications of CMF-E membranes for wound healing scaffolds.

15.
Artículo en Inglés | MEDLINE | ID: mdl-35548975

RESUMEN

The structural design of transition metal-based electrode materials with gigantic energy storage capabilities is a crucial task. In this work, we report an assembly of thin layered double hydroxide (LDH) nanosheets arrayed throughout the luminal and abluminal parts of polypyrrole tunnels fastened onto both sides of a carbon cloth as a battery-type energy storage system. Electron microscopy images reveal that the resulting electrode (NiCo-LDH@H-PPy@CC, where H-PPy@CC represents carbon cloth-supported hollow polypyrrole fibers) is constructed by combining luminal and abluminal NiCo-LDH nanosheets onto a long polypyrrole tunnel on a carbon cloth. The primary sample shows an excellent specific capacity of 149.16 mAh g-1 at 1.0 mA cm-2, a remarkable rate capability of 80.45%, and comprehensive cyclic stability (93.4%). The improved performance is mainly attributed to the strategic organization of the electrode materials with superior Brunauer-Emmett-Teller (BET) surface area and conductivity. Moreover, an asymmetric supercapacitor device assembled with NiCo-LDH@H-PPy@CC and vanadium phosphate-incorporated carbon nanofiber (VPO@CNFs900) electrodes contributes a specific energy density of 32.42 Wh kg-1 at 3 mA cm-2 with a specific power density of 359.16 W kg-1. When the current density is increased by 6-fold, the specific power density reaches 1999.89 W kg-1 at a specific energy density of 20.06 Wh kg-1. This is a simple, cost-effective, and convenient synthetic strategy for the synthesis of porous nanosheet arrays assimilated into hollow fiber architectures, which can illuminate the ideal approach for the fabrication of novel materials with an immense potential for energy storage.

16.
J Infect Dev Ctries ; 16(3): 469-477, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35404852

RESUMEN

INTRODUCTION: There is limited data on clinical course and outcomes of hospitalized adults with COVID-19 in Nepal. Thus, it is imperative to characterize the features of this disease in the domestic context. METHODOLOGY: We identified all adult patients with laboratory-confirmed COVID-19 admitted to five different hospitals in Nepal from June 15 to July 15, 2020. We collected epidemiological, socio-cultural and clinicopathologic data, and stratified the patients based on their symptom status. RESULTS: The study included 220 patients with an overall median age of 31.5 (25-37) years, and 181 (82.3%) were males. 159 (72.3%) were asymptomatic, and 163 (74.1%) were imported cases. Of 217 patients with the available data, 110 (50.7%) reported their annual household income less than 2000 US dollars, and 122 (56.2%) practiced Pranayama (yogic rhythmic breathing techniques) regularly. Eight patients (3.6%) required supplemental oxygen and two patients (0.9%) died. None of the patients who practiced Pranayama regularly required supplemental oxygen. Compared to asymptomatic patients, symptomatic patients had greater proportion of females (31.1% vs. 12.6%, p = 0.001), imported cases (85.2% vs. 69.8%, p = 0.02), illiterates (26.8% vs. 12.1%, p = 0.01), alcohol users (43.3% vs. 24.5%, p = 0.01), and had higher platelet count (253×109/L vs. 185×109/L, p = 0.02). CONCLUSIONS: Most cases were imported, asymptomatic young males, with very few deaths. Pranayama practice was associated with protection against severe COVID-19, but more data is needed to substantiate this. The association of platelets count with symptom status in the Nepalese population needs further exploration.


Asunto(s)
COVID-19 , Adulto , COVID-19/epidemiología , Femenino , Hospitalización , Humanos , Masculino , Nepal/epidemiología , Oxígeno , Estudios Prospectivos
17.
Biochim Biophys Acta ; 1797(4): 451-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20056104

RESUMEN

The effect of illumination and molecular oxygen on the redox and the redox potential changes of cytochrome b(559) (cyt b(559)) has been studied in Tris-treated spinach photosystem II (PSII) membranes. It has been demonstrated that the illumination of Tris-treated PSII membranes induced the conversion of the intermediate-potential (IP) to the reduced high-potential (HP(Fe2+)) form of cyt b(559), whereas the removal of molecular oxygen resulted in the conversion of the IP form to the oxidized high-potential (HP(Fe3+)) form of cyt b(559). Light-induced conversion of cyt b(559) from the IP to the HP form was completely inhibited above pH 8 or by the modification of histidine ligand that prevents its protonation. Interestingly, no effect of high pH or histidine modification was observed during the conversion of the IP to the HP form of cyt b(559) after the removal of molecular oxygen. These results indicate that conversion from the IP to the HP form of cyt b(559) proceeds via different mechanisms. Under illumination, conversion of the IP to the HP form of cyt b(559) depends primarily on the protonation of the histidine residue, whereas under anaerobic conditions, the conversion of the IP to the HP form of cyt b(559) is driven by higher hydrophobicity of the environment around the heme iron resulting from the absence of molecular oxygen.


Asunto(s)
Grupo Citocromo b/metabolismo , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Grupo Citocromo b/química , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Histidina/química , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Luz , Modelos Químicos , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Oxígeno/farmacología , Complejo de Proteína del Fotosistema II/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Potenciometría , Espectrofotometría , Spinacia oleracea/metabolismo , Tilacoides/efectos de los fármacos , Tilacoides/efectos de la radiación , Trometamina/química , Trometamina/farmacología
18.
J Colloid Interface Sci ; 600: 740-751, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34052529

RESUMEN

Designing a novel composite material with hierarchical nanostructures as a negative electrode material with high capacitance and outstanding stability is challenging. To this end, we synthesized carbon nanotubes (CNTs)-protected vanadium phosphate (VPO) nanoparticles trapped within an electrospun carbon matrix (CNTs@VPO@CNFs) for potential use in energy storage applications. Temperature was found to be the major controlling factor for the fabrication of composites with CNT decoration. CNTs@VPO@CNFs exhibited the highest capacitance of 576.1F g-1 at a current density of 0.66 A g-1 among other corresponding electrode materials. Furthermore, this electrode exhibited outstanding stability of up to 99% after 5000 cycles, which was attributed to the coating of core-forming VPO@CNFs by the CNTs as the sheath material. Interestingly, the as-fabricated material worked in a wide potential range from -1.2 to 0.6, thereby providing the opportunity to assemble a symmetric supercapacitor device (SSCD). The SSCD showed an exceptionally high energy density of 69.1 W h kg-1 at a power density of 3.2 kW h and ~ 90% stability after 5000 cycles. Thus, this work presents a strategy for fabricating a new composite as a negative electrode material that can be used in a symmetrical supercapacitor device with an ultrahigh energy density.

19.
ACS Appl Bio Mater ; 4(12): 8424-8432, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35005947

RESUMEN

Microfluidic-based neuron cell culture systems have recently gained a lot of attention due to their efficiency in supporting the spatial and temporal control of cellular microenvironments. However, the lack of axon guidance is the key limitation in current culture systems. To combat this, we have developed electrospun aligned nanofiber-integrated compartmentalized microfluidic neuron culture systems (NIMSs), where the nanofibers have enabled axonal guidance and stability. The resulting platform significantly improved axon alignment, length, and stability for both rat primary embryonic motor neurons (MNs) and dorsal root ganglia (DRG) neurons compared to the conventional glass-based microfluidic systems (GMSs). The results showed that axonal growth covered more than two times the area on the axonal chamber of NIMSs compared to the area covered for GMSs. Overall, this platform can be used as a valuable tool for fundamental neuroscience research, drug screening, and biomaterial testing.


Asunto(s)
Microfluídica , Nanofibras , Animales , Axones/fisiología , Ganglios Espinales , Microfluídica/métodos , Neuronas , Ratas
20.
ACS Appl Mater Interfaces ; 13(20): 23732-23742, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33977710

RESUMEN

The fabrication of an economic and efficient multifunctional advanced nanomaterial with a rational composition and configuration by a facile methodology is a crucial challenge. Herein, we are the first to report the growth of Co nanoparticle-integrated nitrogen-doped carbon nanotubes (N-CNTs) on porous carbon nanofibers by simply heating in the situ-developed metal-organic framework (MOF)-based electrospun nanofibrous membrane with no need for an external supply of any additional precursors and reducing gases. The long and entangled N-CNTs originating from highly porous and graphitic carbon nanofibers offer good flexibility, large surface area, high porosity, high conductivity, the homogeneous incorporation of heteroatoms and metallic constituents, and an abundant exposure of active nanocatalytic sites. The as-developed nanoassembly demonstrates attractive characteristics for electrocatalytic hydrogen and oxygen evolution reactions and electrochemical energy storage. This strategy of integrating the essence of an MOF with electrospinning offers a new, direct, and cost-effective approach for making N-doped CNT-based multifunctional membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA