Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancers (Basel) ; 13(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805904

RESUMEN

A recent boom in mucosal-associated invariant T (MAIT) cell research has identified relationships between MAIT cell abundance, function, and clinical outcomes in various malignancies. As they express a variety of immune checkpoint receptors and ligands, and possess strong cytotoxic functions, MAIT cells are an attractive new subject in the field of tumor immunology. MAIT cells are a class of innate-like T cells that express a semi-invariant T cell antigen receptor (TCR) that recognizes microbially derived non-peptide antigens presented by the non-polymorphic MHC class-1 like molecule, MR1. In this review, we outline the current (and often contradictory) evidence exploring MAIT cell biology and how MAIT cells impact clinical outcomes in different human cancers, as well as what role they may have in cancer immunotherapy.

2.
Nat Med ; 20(10): 1211-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25216635

RESUMEN

Here we describe a blood-cleansing device for sepsis therapy inspired by the spleen, which can continuously remove pathogens and toxins from blood without first identifying the infectious agent. Blood flowing from an infected individual is mixed with magnetic nanobeads coated with an engineered human opsonin--mannose-binding lectin (MBL)--that captures a broad range of pathogens and toxins without activating complement factors or coagulation. Magnets pull the opsonin-bound pathogens and toxins from the blood; the cleansed blood is then returned back to the individual. The biospleen efficiently removes multiple Gram-negative and Gram-positive bacteria, fungi and endotoxins from whole human blood flowing through a single biospleen unit at up to 1.25 liters per h in vitro. In rats infected with Staphylococcus aureus or Escherichia coli, the biospleen cleared >90% of bacteria from blood, reduced pathogen and immune cell infiltration in multiple organs and decreased inflammatory cytokine levels. In a model of endotoxemic shock, the biospleen increased survival rates after a 5-h treatment.


Asunto(s)
Órganos Artificiales , Circulación Extracorporea/instrumentación , Sepsis/sangre , Sepsis/terapia , Bazo , Animales , Ingeniería Biomédica , Materiales Biomiméticos , Endotoxinas/sangre , Endotoxinas/aislamiento & purificación , Diseño de Equipo , Escherichia coli/aislamiento & purificación , Humanos , Magnetismo , Masculino , Lectina de Unión a Manosa/genética , Técnicas Analíticas Microfluídicas , Datos de Secuencia Molecular , Proteínas Opsoninas/genética , Ratas , Ratas Wistar , Sepsis/microbiología , Staphylococcus aureus/aislamiento & purificación
3.
PLoS One ; 8(10): e76122, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098430

RESUMEN

Changes in extracellular matrix (ECM) structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1)-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics) to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation.


Asunto(s)
Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Mamarias Experimentales , Ratones , Modelos Biológicos , Estadificación de Neoplasias , Neoplasias/patología , Microambiente Tumoral
4.
Lab Chip ; 12(12): 2175-81, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22453808

RESUMEN

Here we describe a combined microfluidic-micromagnetic cell separation device that has been developed to isolate, detect and culture circulating tumor cells (CTCs) from whole blood, and demonstrate its utility using blood from mammary cancer-bearing mice. The device was fabricated from polydimethylsiloxane and contains a microfluidic architecture with a main channel and redundant 'double collection' channel lined by two rows of dead-end side chambers for tumor cell collection. The microdevice design was optimized using computational simulation to determine dimensions, magnetic forces and flow rates for cell isolation using epithelial cell adhesion molecule (EpCAM) antibody-coated magnetic microbeads (2.8 µm diameter). Using this device, isolation efficiencies increased in a linear manner and reached efficiencies close to 90% when only 2 to 80 breast cancer cells were spiked into a small volume (1.0 mL) of blood taken from wild type mice. The high sensitivity visualization capabilities of the device also allowed detection of a single cell within one of its dead-end side chambers. When blood was removed from FVB C3(1)-SV40 T-antigen mammary tumor-bearing transgenic mice at different stages of tumor progression, cells isolated in the device using anti-EpCAM-beads and magnetically collected within the dead-end side chambers, also stained positive for pan-cytokeratin-FITC and DAPI, negative for CD45-PerCP, and expressed SV40 large T antigen, thus confirming their identity as CTCs. Using this isolation approach, we detected a time-dependent rise in the number of CTCs in blood of female transgenic mice, with a dramatic increase in the numbers of metastatic tumor cells appearing in the blood after 20 weeks when tumors transition to invasive carcinoma and exhibit increased growth of metastases in this model. Importantly, in contrast to previously described CTC isolation methods, breast tumor cells collected from a small volume of blood removed from a breast tumor-bearing animal remain viable and they can be easily removed from these devices and expanded in culture for additional analytical studies or potential drug sensitivity testing.


Asunto(s)
Separación Inmunomagnética , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Animales , Anticuerpos Inmovilizados/inmunología , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Neoplasias de la Mama/sangre , Moléculas de Adhesión Celular/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Fluoresceína-5-Isotiocianato/química , Humanos , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia , Plásmidos/genética , Plásmidos/metabolismo , Virus 40 de los Simios/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA