Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 45(13): e2300698, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38563886

RESUMEN

Regioselective modifications of cellulose using activated cellulose derivatives such as 6-halo-6-deoxycelluloses provide a convenient approach for developing sustainable products with properties tailored to specific applications. However, maintaining precise regiochemical control of substituent distribution in 6-halo-6-deoxycelluloses is challenging due to their insolubility in most common solvents and the resulting difficulties in precise structure elucidation by modern instrumental analytical techniques. Herein, an accessible NMR-based approach toward detailed characterization of 6-halo-6-deoxycelluloses, including the determination of the degrees of substitution at carbon 6 (DS6), is presented. It is shown that the direct-dissolution cellulose solvent, tetrabutylphosphonium acetate:DMSO-d6, converts 6-halo-6-deoxycelluloses to 6-monoacetylcellulose, enabling in situ solution-state NMR measurements. A range of 1D and 2D NMR experiments is used to demonstrate the quantitivity of the conversion and provide optimum dissolution conditions. In comparison with other NMR-based derivatization protocols for elucidating the structure of 6-halo-6-deoxycelluloses, the presented approach offers major advantages in terms of accuracy, speed, and simplicity of analysis, and minimal requirements for reagents or NMR instrumentation.


Asunto(s)
Celulosa , Espectroscopía de Resonancia Magnética , Celulosa/química , Estructura Molecular , Soluciones , Solubilidad , Solventes/química
2.
J Org Chem ; 82(24): 13756-13767, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29135249

RESUMEN

Facile photoreductive protocols have been developed to remove benzyl O-protective groups from oxyarene N-heterocycles at positions capable for 2-/4-O-pyridine-2-/4-pyridone tautomerism. Blue light irradiation, a [Ru] or [Ir] photocatalyst, and ascorbic acid in a water-acetonitrile solution debenzylates a variety of aryl N-heterocycles cleanly and selectively. Ascorbic acid has two functions in the reaction. On the one hand, it protonates the N-heterocycles that reduces their reduction potentials notably and on the other hand it acts as a sacrificial reductant. Reduction potentials and free energy barriers calculated at the CPCM-B3LYP/6-31+G** level can predict the reactivities of the studied substrates.

3.
RSC Adv ; 13(9): 5983-5992, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816067

RESUMEN

A sustainable homogeneous transesterification protocol utilizing the superbase ionic liquid [mTBNH][OAc] and unactivated methyl esters has been developed for the preparation of cellulose esters with controllable degree of substitution. [mTBNH][OAc] shows excellent recyclability with a high recovery of sufficient purity for repeated use. This reaction media allows for cellulose transesterification reactions not only using activated or cyclic esters, but also with unactivated methyl esters, which extends the substrate and application scope. Furthermore, the solubility properties of the prepared cellulose materials were tested and some intrinsic trends were observed at low degrees of substitution.

4.
Nat Protoc ; 18(7): 2084-2123, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37237027

RESUMEN

Owing to its high sustainable production capacity, cellulose represents a valuable feedstock for the development of more sustainable alternatives to currently used fossil fuel-based materials. Chemical analysis of cellulose remains challenging, and analytical techniques have not advanced as fast as the development of the proposed materials science applications. Crystalline cellulosic materials are insoluble in most solvents, which restricts direct analytical techniques to lower-resolution solid-state spectroscopy, destructive indirect procedures or to 'old-school' derivatization protocols. While investigating their use for biomass valorization, tetralkylphosphonium ionic liquids (ILs) exhibited advantageous properties for direct solution-state nuclear magnetic resonance (NMR) analysis of crystalline cellulose. After screening and optimization, the IL tetra-n-butylphosphonium acetate [P4444][OAc], diluted with dimethyl sulfoxide-d6, was found to be the most promising partly deuterated solvent system for high-resolution solution-state NMR. The solvent system has been used for the measurement of both 1D and 2D experiments for a wide substrate scope, with excellent spectral quality and signal-to-noise, all with modest collection times. The procedure initially describes the scalable syntheses of an IL, in 24-72 h, of sufficient purity, yielding a stock electrolyte solution. The dissolution of cellulosic materials and preparation of NMR samples is presented, with pretreatment, concentration and dissolution time recommendations for different sample types. Also included is a set of recommended 1D and 2D NMR experiments with parameters optimized for an in-depth structural characterization of cellulosic materials. The time required for full characterization varies between a few hours and several days.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Solubilidad , Celulosa/química , Solventes/química , Espectroscopía de Resonancia Magnética , Electrólitos/química
5.
Chemistry ; 18(23): 7269-77, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22517539

RESUMEN

Novel 4-hydroxyquinoline (4HQ) based tautomeric switches are reported. 4HQs equipped with coordinative side arms (8-arylimino and 3-piperidin-1-ylmethyl groups) were synthesized to access O- or N-selective chelation of Zn(2+) and Cd(2+) ions by 4HQ. In the case of the monodentate arylimino group, O chelation of metal ions induces concomitant switching of phenol tautomer to the keto form in nonpolar or aprotic media. This change is accompanied by selective and highly sensitive fluorometric sensing of Zn(2+) ions. In the case of the bidentate 8-(quinolin-8-ylimino)methyl side arm, NMR studies in CD(3) OD indicated that both Cd(2+) and Zn(2+) ions afford N chelation for 4HQ, coexisting with tautomeric switching from quinolin-4(1H)-one to quinolin-4-olate. In corroboration, UV/Vis-monitored metal-ion titrations in toluene and methanol implied similar structural changes. Additionally, fluorescence measurements indicated that the metal-triggered tautomeric switching is associated with compound signaling properties. The results are supported by DFT calculations at the B3LYP 6-31G* level. Several X-ray structures of metal-free and metal-chelating 4HQ are presented to support the solution studies.

6.
Org Lett ; 21(10): 3764-3768, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31066563

RESUMEN

A photoreductive protocol utilizing [Ru(bpy)3]2+ photocatalyst, blue light LEDs, and ascorbic acid (AscH2) has been developed to reduce nitro N-heteroaryls to the corresponding anilines. Based on experimental and computational results and previous studies, we propose that the reaction proceeds via proton-coupled electron transfer between AscH2, photocatalyst, and the nitro N-heteroaryl. The method offers a green catalytic procedure to reduce, e.g., 4-/8-nitroquinolines to the corresponding aminoquinolines, substructures present in important antimalarial drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA