Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430062

RESUMEN

This study investigated the influence of white vs. 12 background and overlay colors on the reading process in twenty-four school-age children. Previous research reported that colors could affect reading skills as an important factor in the emotional and physiological state of the body. The aim of the study was to assess developmental differences between second and third grade students of an elementary school, and to evaluate differences in electroencephalography (EEG), ocular, electrodermal activities (EDA) and heart rate variability (HRV). Our findings showed a decreasing trend with age regarding EEG power bands (Alpha, Beta, Delta, Theta) and lower scores of reading duration and eye-tracking measures in younger children compared to older children. As shown in the results, HRV parameters showed higher scores in 12 background and overlay colors among second than third grade students, which is linearly correlated to the level of stress and is readable from EDA measures as well. Our study showed the calming effect on second graders of turquoise and blue background colors. Considering other colors separately for each parameter, we assumed that there are no systematic differences in reading duration, EEG power band, eye-tracking and EDA measures.

2.
J Am Chem Soc ; 142(11): 5126-5134, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32150404

RESUMEN

Metal halide perovskites show promise for light-emitting diodes (LEDs) owing to their facile manufacture and excellent optoelectronic performance, including high color purity and spectral stability, especially in the green region. However, for blue perovskite LEDs, the emission spectrum line width is broadened to over 25 nm by the coexistence of multiple reduced-dimensional perovskite domains, and the spectral stability is poor, with an undesirable shift (over 7 nm) toward longer wavelengths under operating conditions, degradation that occurs due to phase separation when mixed halides are employed. Here we demonstrate chloride insertion-immobilization, a strategy that enables blue perovskite LEDs, the first to exhibit narrowband (line width of 18 nm) and spectrally stable (no wavelength shift) performance. We prepare bromide-based perovskites and then employ organic chlorides for dynamic treatment, inserting and in situ immobilizing chlorides to blue-shift and stabilize the emission. We achieve sky-blue LEDs with a record luminance over 5100 cd/m2 at 489 nm, and an operating half-life of 51 min at 1500 cd/m2. By device structure optimization, we further realize an improved EQE of 5.2% at 479 nm and an operating half-life of 90 min at 100 cd/m2.

3.
J Am Chem Soc ; 141(34): 13459-13467, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31366193

RESUMEN

Two-dimensional (2D) and quasi-2D perovskite materials have enabled advances in device performance and stability relevant to a number of optoelectronic applications. However, the alignment among the bands of these variably quantum confined materials remains a controversial topic: there exist multiple experimental reports supporting type-I, and also others supporting type-II, band alignment among the reduced-dimensional grains. Here we report a combined computational and experimental study showing that variable ligand concentration on grain surfaces modulates the surface charge density among neighboring quantum wells. Density functional theory calculations and ultraviolet photoelectron spectroscopy reveal that the effective work function of a given quantum well can be varied by modulating the density of ligands at the interface. These induce type-II interfaces in otherwise type-I aligned materials. By treating 2D perovskite films, we find that the effective work function can indeed be shifted down by up to 1 eV. We corroborate the model via a suite of pump-probe transient absorption experiments: these manifest charge transfer consistent with a modulation in band alignment of at least 200 meV among neighboring grains. The findings shed light on perovskite 2D band alignment and explain contrasting behavior of quasi-2D materials in light-emitting diodes (LEDs) and photovoltaics (PV) in the literature, where materials can exhibit either type-I or type-II interfaces depending on the ligand concentration at neighboring surfaces.

4.
J Am Chem Soc ; 141(20): 8296-8305, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31055917

RESUMEN

Metal halide perovskites exhibit outstanding optoelectronic properties: superior charge carrier mobilities, low densities of deep trap states, high photoluminescence quantum yield, and wide color tunability. The introduction of dopant ions provides pathways to manipulate the electronic and chemical features of perovskites. In metal halide perovskites ABX3, where A is a monovalent cation (e.g., methylammonium (MA+), Cs+), B is the divalent metal ion(s) (e.g., Pb2+, Sn2+), and X is the halide group (e.g., Cl-, Br-, or I-), the isovalent exchange of A- and X-site ions has been widely accomplished; in contrast, strategies to exchange B-site cations are underexamined. The activation energies for vacancy-mediated diffusion of B-site cations are much higher than those for A- and X-sites, leading to slow doping processes and low doping ratios. Herein we demonstrate a new method that exchanges B-site cations in perovskites. We design a series of metal carboxylate solutions that anchor on the perovskite surface, allowing fast and efficient doping of B-sites with both homovalent and heterovalent cations (e.g., Sn2+, Zn2+, Bi3+) at room temperature. The doping process in the reduced-dimensional perovskites is complete within 1 min, whereas a similar reaction only leads to the surface attachment of dopant ions in three-dimensional structures. We offer a model based on ammonium extraction and surface ion-pair substitution.

5.
J Am Chem Soc ; 140(36): 11378-11386, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30113834

RESUMEN

The electrochemical carbon dioxide reduction reaction (CO2RR) produces diverse chemical species. Cu clusters with a judiciously controlled surface coordination number (CN) provide active sites that simultaneously optimize selectivity, activity, and efficiency for CO2RR. Here we report a strategy involving metal-organic framework (MOF)-regulated Cu cluster formation that shifts CO2 electroreduction toward multiple-carbon product generation. Specifically, we promoted undercoordinated sites during the formation of Cu clusters by controlling the structure of the Cu dimer, the precursor for Cu clusters. We distorted the symmetric paddle-wheel Cu dimer secondary building block of HKUST-1 to an asymmetric motif by separating adjacent benzene tricarboxylate moieties using thermal treatment. By varying materials processing conditions, we modulated the asymmetric local atomic structure, oxidation state and bonding strain of Cu dimers. Using electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) experiments, we observed the formation of Cu clusters with low CN from distorted Cu dimers in HKUST-1 during CO2 electroreduction. These exhibited 45% C2H4 faradaic efficiency (FE), a record for MOF-derived Cu cluster catalysts. A structure-activity relationship was established wherein the tuning of the Cu-Cu CN in Cu clusters determines the CO2RR selectivity.

6.
Ergonomics ; 60(2): 241-254, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26772445

RESUMEN

Continuous and objective measurement of the user attention state still represents a major challenge in the ergonomics research. Recently available wearable electroencephalography (EEG) opens new opportunities for objective and continuous evaluation of operators' attention, which may provide a new paradigm in ergonomics. In this study, wearable EEG was recorded during simulated assembly operation, with the aim to analyse P300 event-related potential component, which provides reliable information on attention processing. In parallel, reaction times (RTs) were recorded and the correlation between these two attention-related modalities was investigated. Negative correlation between P300 amplitudes and RTs has been observed on the group level (p < .001). However, on the individual level, the obtained correlations were not consistent. As a result, we propose the P300 amplitude for accurate attention monitoring in ergonomics research. On the other hand, no significant correlation between RTs and P300 latency was found on group, neither on individual level. Practitioner Summary: Ergonomic studies of assembly operations mainly investigated physical aspects, while mental states of the assemblers were not sufficiently addressed. Presented study aims at attention tracking, using realistic workplace replica. It is shown that drops in attention could be successfully traced only by direct brainwave observation, using wireless electroencephalographic measurements.


Asunto(s)
Atención , Encéfalo , Potenciales Relacionados con Evento P300 , Tiempo de Reacción , Trabajo , Electroencefalografía , Humanos , Masculino , Monitoreo Fisiológico , Adulto Joven
7.
Adv Mater ; 33(33): e2101056, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34245178

RESUMEN

Charge carrier transport in colloidal quantum dot (CQD) solids is strongly influenced by coupling among CQDs. The shape of as-synthesized CQDs results in random orientational relationships among facets in CQD solids, and this limits the CQD coupling strength and the resultant performance of optoelectronic devices. Here, colloidal-phase reconstruction of CQD surfaces, which improves facet alignment in CQD solids, is reported. This strategy enables control over CQD faceting and allows demonstration of enhanced coupling in CQD solids. The approach utilizes post-synthetic resurfacing and unites surface passivation and colloidal stability with a propensity for dots to couple via (100):(100) facets, enabling increased hole mobility. Experimentally, the CQD solids exhibit a 10× increase in measured hole mobility compared to control CQD solids, and enable photodiodes (PDs) exhibiting 70% external quantum efficiency (vs 45% for control devices) and specific detectivity, D* > 1012  Jones, each at 1550 nm. The photodetectors feature a 7 ns response time for a 0.01 mm2 area-the fastest reported for solution-processed short-wavelength infrared PDs.

8.
Adv Sci (Weinh) ; 7(15): 2000894, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32775165

RESUMEN

Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large-diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c-Si and perovskites. The absorption coefficient of IR CQDs (≈104 cm-1) entails the need for micrometer-thick films to maximize the absorption of IR light. This exceeds the thickness compatible with the efficient extraction of photogenerated carriers, a fact that limits device performance. Here, CQD bulk heterojunction solids are demonstrated that, with extended carrier transport length, enable efficient IR light harvesting. An in-solution doping strategy for large-diameter CQDs is devised that addresses the complex interplay between (100) facets and doping agents, enabling to control CQD doping, energetic configuration, and size homogeneity. The hetero-offset between n-type CQDs and p-type CQDs is manipulated to drive the transfer of electrons and holes into distinct carrier extraction pathways. This enables to form active layers exceeding thicknesses of 700 nm without compromising open-circuit voltage and fill factor. As a result, >90% charge extraction efficiency across the ultraviolet to IR range (350-1400 nm) is documented.

9.
Adv Mater ; 32(7): e1906497, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31930771

RESUMEN

Colloidal quantum dots (CQDs) are promising materials for photovoltaic (PV) applications owing to their size-tunable bandgap and solution processing. However, reports on CQD PV stability have been limited so far to storage in the dark; or operation illuminated, but under an inert atmosphere. CQD PV devices that are stable under continuous operation in air have yet to be demonstrated-a limitation that is shown here to arise due to rapid oxidation of both CQDs and surface passivation. Here, a stable CQD PV device under continuous operation in air is demonstrated by introducing additional potassium iodide (KI) on the CQD surface that acts as a shielding layer and thus stands in the way of oxidation of the CQD surface. The devices (unencapsulated) retain >80% of their initial efficiency following 300 h of continuous operation in air, whereas CQD PV devices without KI lose the amount of performance within just 21 h. KI shielding also provides improved surface passivation and, as a result, a higher power conversion efficiency (PCE) of 12.6% compared with 11.4% for control devices.

10.
Adv Mater ; 32(17): e1906199, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32196136

RESUMEN

Colloidal quantum dots (CQDs) are of interest in light of their solution-processing and bandgap tuning. Advances in the performance of CQD optoelectronic devices require fine control over the properties of each layer in the device materials stack. This is particularly challenging in the present best CQD solar cells, since these employ a p-type hole-transport layer (HTL) implemented using 1,2-ethanedithiol (EDT) ligand exchange on top of the CQD active layer. It is established that the high reactivity of EDT causes a severe chemical modification to the active layer that deteriorates charge extraction. By combining elemental mapping with the spatial charge collection efficiency in CQD solar cells, the key materials interface dominating the subpar performance of prior CQD PV devices is demonstrated. This motivates to develop a chemically orthogonal HTL that consists of malonic-acid-crosslinked CQDs. The new crosslinking strategy preserves the surface chemistry of the active layer beneath, and at the same time provides the needed efficient charge extraction. The new HTL enables a 1.4× increase in charge carrier diffusion length in the active layer; and as a result leads to an improvement in power conversion efficiency to 13.0% compared to EDT standard cells (12.2%).

11.
Adv Sci (Weinh) ; 7(7): 1903166, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32274311

RESUMEN

Thin-film solar cells based on hybrid lead halide perovskites have achieved certified power conversion efficiencies exceeding 24%, approaching those of crystalline silicon. This motivates deeper studies of the mechanisms that determine their performance. Twin defect sites have been proposed as a source of traps in perovskites, yet their origin and influence on photovoltaic performance remain unclear. It is found that twin defects-observed herein via both transmission electron microscopy and X-ray diffraction-are correlated with the amount of antisolvent added to the perovskite and that twin defects in the highest-performing perovskite photovoltaics are suppressed. Heterogeneous supersaturation nucleation is discussed as a contributor to efficient perovskite-based optoelectronic devices.

12.
Adv Mater ; 32(12): e1907058, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32030824

RESUMEN

The development of narrow-bandgap (Eg ≈ 1.2 eV) mixed tin-lead (Sn-Pb) halide perovskites enables all-perovskite tandem solar cells. Whereas pure-lead halide perovskite solar cells (PSCs) have advanced simultaneously in efficiency and stability, achieving this crucial combination remains a challenge in Sn-Pb PSCs. Here, Sn-Pb perovskite grains are anchored with ultrathin layered perovskites to overcome the efficiency-stability tradeoff. Defect passivation is achieved both on the perovskite film surface and at grain boundaries, an approach implemented by directly introducing phenethylammonium ligands in the antisolvent. This improves device operational stability and also avoids the excess formation of layered perovskites that would otherwise hinder charge transport. Sn-Pb PSCs with fill factors of 79% and a certified power conversion efficiency (PCE) of 18.95% are reported-among the highest for Sn-Pb PSCs. Using this approach, a 200-fold enhancement in device operating lifetime is achieved relative to the nonpassivated Sn-Pb PSCs under full AM1.5G illumination, and a 200 h diurnal operating time without efficiency drop is achieved under filtered AM1.5G illumination.

13.
Nat Nanotechnol ; 15(3): 192-197, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31959929

RESUMEN

Chirality-the property of an object wherein it is distinguishable from its mirror image-is of widespread interest in chemistry and biology1-6. Regioselective magnetization of one-dimensional semiconductors enables anisotropic magnetism at room temperature, as well as the manipulation of spin polarization-the properties essential for spintronics and quantum computing technology7. To enable oriented magneto-optical functionalities, the growth of magnetic units has to be achieved at targeted locations on a parent nanorod. However, this challenge is yet to be addressed in the case of materials with a large lattice mismatch. Here, we report the regioselective magnetization of nanorods independent of lattice mismatch via buffer intermediate catalytic layers that modify interfacial energetics and promote regioselective growth of otherwise incompatible materials. Using this strategy, we combine materials with distinct lattices, chemical compositions and magnetic properties, that is, a magnetic component (Fe3O4) and a series of semiconducting nanorods absorbing across the ultraviolet and visible spectrum at specific locations. The resulting heteronanorods exhibit optical activity as induced by the location-specific magnetic field. The regioselective magnetization strategy presented here enables a path to designing optically active nanomaterials for chirality and spintronics.

14.
Nat Nanotechnol ; 15(8): 668-674, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32632321

RESUMEN

Colloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport1 and for applications in optoelectronics2. Forming high-quality QD solids-necessary for device fabrication-requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport3. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites4. Here we report perovskite QD resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules. The outer shell is electrostatically adsorbed to the negatively charged inner shell. This approach produces strongly confined perovskite QD solids that feature improved carrier mobility (≥0.01 cm2 V-1 s-1) and reduced trap density relative to previously reported low-dimensional perovskites. Blue-emitting QD films exhibit photoluminescence quantum yields exceeding 90%. By exploiting the improved mobility, we have been able to fabricate CsPbBr3 QD-based efficient blue and green light-emitting diodes. Blue devices with reduced trap density have an external quantum efficiency of 12.3%; the green devices achieve an external quantum efficiency of 22%.

15.
Nat Commun ; 11(1): 170, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924790

RESUMEN

Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 ± 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m-2; their maximum luminance is 4.5 × 104 cd m-2 (corresponding to an EQE of 5%); and, at 4000 cd m-2, they achieve an operational half-lifetime of 3.5 h.

16.
ACS Nano ; 13(10): 11122-11128, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31539477

RESUMEN

Colloidal quantum dots (CQDs) allow broad tuning of the bandgap across the visible and near-infrared spectral regions. Recent advances in applying CQDs in light sensing, photovoltaics, and light emission have heightened interest in achieving further synthetic improvements. In particular, improving monodispersity remains a key priority in order to improve solar cells' open-circuit voltage, decrease lasing thresholds, and improve photodetectors' noise-equivalent power. Here we utilize machine-learning-in-the-loop to learn from available experimental data, propose experimental parameters to try, and, ultimately, point to regions of synthetic parameter space that will enable record-monodispersity PbS quantum dots. The resultant studies reveal that adding a growth-slowing precursor (oleylamine) allows nucleation to prevail over growth, a strategy that enables record-large-bandgap (611 nm exciton) PbS nanoparticles with a well-defined excitonic absorption peak (half-width at half-maximum (hwhm) of 145 meV). At longer wavelengths, we also achieve improved monodispersity, with an hwhm of 55 meV at 950 nm and 24 meV at 1500 nm, compared to the best published to date values of 75 and 26 meV, respectively.

17.
Adv Mater ; 31(16): e1808336, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30811666

RESUMEN

Rapid and efficient conversion of electrical signals to optical signals is needed in telecommunications and data network interconnection. The linear electro-optic (EO) effect in noncentrosymmetric materials offers a pathway to such conversion. Conventional inorganic EO materials make on-chip integration challenging, while organic nonlinear molecules suffer from thermodynamic molecular disordering that decreases the EO coefficient of the material. It has been posited that hybrid metal halide perovskites could potentially combine the advantages of inorganic materials (stable crystal orientation) with those of organic materials (solution processing). Here, layered metal halide perovskites are reported and investigated for in-plane birefringence and linear electro-optic response. Phenylmethylammonium lead chloride (PMA2 PbCl4 ) crystals are grown that exhibit a noncentrosymmetric space group. Birefringence measurements and Raman spectroscopy confirm optical and structural anisotropy in the material. By applying an electric field on the crystal surface, the linear EO effect in PMA2 PbCl4 is reported and its EO coefficient is determined to be 1.40 pm V-1 . This is the first demonstration of this effect in hybrid metal halide perovskites, materials that feature both highly ordered crystalline structures and solution processability. The in-plane birefringence and electro-optic response reveal that layered perovskite crystals could be further explored for potential applications in polarizing optics and EO modulation.

18.
Adv Mater ; 31(48): e1904304, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31600007

RESUMEN

Infrared-absorbing colloidal quantum dots (IR CQDs) are materials of interest in tandem solar cells to augment perovskite and cSi photovoltaics (PV). Today's best IR CQD solar cells rely on the use of passivation strategies based on lead iodide; however, these fail to passivate the entire surface of IR CQDs. Lead chloride passivated CQDs show improved passivation, but worse charge transport. Lead bromide passivated CQDs have higher charge mobilities, but worse passivation. Here a mixed lead-halide (MPbX) ligand exchange is introduced that enables thorough surface passivation without compromising transport. MPbX-PbS CQDs exhibit properties that exceed the best features of single lead-halide PbS CQDs: they show improved passivation (43 ± 5 meV vs 44 ± 4 meV in Stokes shift) together with higher charge transport (4 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 vs 3 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 in mobility). This translates into PV devices having a record IR open-circuit voltage (IR Voc ) of 0.46 ± 0.01 V while simultaneously having an external quantum efficiency of 81 ± 1%. They provide a 1.7× improvement in the power conversion efficiency of IR photons (>1.1 µm) relative to the single lead-halide controls reported herein.

19.
J Phys Chem Lett ; 10(3): 419-426, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630317

RESUMEN

Solution-processed perovskite quantum wells have been used to fabricate increasingly efficient and stable optoelectronic devices. Little is known about the dynamics of photogenerated excitons in perovskite quantum wells within the first few hundred femtoseconds-a crucial time scale on which energy and charge transfer processes may compete. Here we use ultrafast transient absorption and two-dimensional electronic spectroscopy to clarify the movement of excitons and charges in reduced-dimensional perovskite solids. We report excitonic funneling from strongly to weakly confined perovskite quantum wells within 150 fs, facilitated by strong spectral overlap and orientational alignment among neighboring wells. This energy transfer happens on time scales orders of magnitude faster than charge transfer, which we find to occur instead over 10s to 100s of picoseconds. Simulations of both Förster-type interwell exciton transfer and free carrier charge transfer are in agreement with these experimental findings, with theoretical exciton transfer calculated to occur in 100s of femtoseconds.

20.
Nat Commun ; 10(1): 5186, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31780655

RESUMEN

The electroreduction of C1 feedgas to high-energy-density fuels provides an attractive avenue to the storage of renewable electricity. Much progress has been made to improve selectivity to C1 and C2 products, however, the selectivity to desirable high-energy-density C3 products remains relatively low. We reason that C3 electrosynthesis relies on a higher-order reaction pathway that requires the formation of multiple carbon-carbon (C-C) bonds, and thus pursue a strategy explicitly designed to couple C2 with C1 intermediates. We develop an approach wherein neighboring copper atoms having distinct electronic structures interact with two adsorbates to catalyze an asymmetric reaction. We achieve a record n-propanol Faradaic efficiency (FE) of (33 ± 1)% with a conversion rate of (4.5 ± 0.1) mA cm-2, and a record n-propanol cathodic energy conversion efficiency (EEcathodic half-cell) of 21%. The FE and EEcathodic half-cell represent a 1.3× improvement relative to previously-published CO-to-n-propanol electroreduction reports.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA