RESUMEN
Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos , Línea Celular Transformada , Codón sin Sentido , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Datos de Secuencia Molecular , Linaje , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , SíndromeRESUMEN
We examined the coding sequence of 518 protein kinases, approximately 1.3 Mb of DNA per sample, in 25 breast cancers. In many tumors, we detected no somatic mutations. But a few had numerous somatic mutations with distinctive patterns indicative of either a mutator phenotype or a past exposure.
Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Mutación , Proteínas Quinasas/genética , Anciano , Análisis Mutacional de ADN , Femenino , Humanos , Familia de MultigenesRESUMEN
Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias/genética , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Humanos , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Quinasas/química , Proteínas Quinasas/genéticaRESUMEN
The protein-kinase family is the most frequently mutated gene family found in human cancer and faulty kinase enzymes are being investigated as promising targets for the design of antitumour therapies. We have sequenced the gene encoding the transmembrane protein tyrosine kinase ERBB2 (also known as HER2 or Neu) from 120 primary lung tumours and identified 4% that have mutations within the kinase domain; in the adenocarcinoma subtype of lung cancer, 10% of cases had mutations. ERBB2 inhibitors, which have so far proved to be ineffective in treating lung cancer, should now be clinically re-evaluated in the specific subset of patients with lung cancer whose tumours carry ERBB2 mutations.
Asunto(s)
Neoplasias Pulmonares/genética , Mutación/genética , Receptor ErbB-2/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Análisis Mutacional de ADN , Activación Enzimática , Receptores ErbB/química , Receptores ErbB/genética , Gefitinib , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Estructura Terciaria de Proteína , Quinazolinas/uso terapéutico , Receptor ErbB-2/química , Receptor ErbB-2/metabolismoRESUMEN
Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.
Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/genética , Proteínas de Unión al ADN/genética , Dacarbazina/análogos & derivados , Glioma/genética , Mutación , Recurrencia Local de Neoplasia/genética , Anciano , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/enzimología , Dacarbazina/uso terapéutico , Femenino , Glioma/tratamiento farmacológico , Glioma/enzimología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/enzimología , Proteínas Quinasas/genética , TemozolomidaRESUMEN
Protein kinases are frequently mutated in human cancer and inhibitors of mutant protein kinases have proven to be effective anticancer drugs. We screened the coding sequences of 518 protein kinases (approximately 1.3 Mb of DNA per sample) for somatic mutations in 26 primary lung neoplasms and seven lung cancer cell lines. One hundred eighty-eight somatic mutations were detected in 141 genes. Of these, 35 were synonymous (silent) changes. This result indicates that most of the 188 mutations were "passenger" mutations that are not causally implicated in oncogenesis. However, an excess of approximately 40 nonsynonymous substitutions compared with that expected by chance (P = 0.07) suggests that some nonsynonymous mutations have been selected and are contributing to oncogenesis. There was considerable variation between individual lung cancers in the number of mutations observed and no mutations were found in lung carcinoids. The mutational spectra of most lung cancers were characterized by a high proportion of C:G > A:T transversions, compatible with the mutagenic effects of tobacco carcinogens. However, one neuroendocrine cancer cell line had a distinctive mutational spectrum reminiscent of UV-induced DNA damage. The results suggest that several mutated protein kinases may be contributing to lung cancer development, but that mutations in each one are infrequent.
Asunto(s)
Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Mutación , Proteínas Quinasas/genética , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Tumor Carcinoide/enzimología , Tumor Carcinoide/genética , Carcinoma de Células Grandes/enzimología , Carcinoma de Células Grandes/genética , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Análisis Mutacional de ADN , HumanosRESUMEN
The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens.
Asunto(s)
Línea Celular Tumoral , Genes Relacionados con las Neoplasias , Mutación , Análisis Mutacional de ADN , Exones , Eliminación de Gen , Perfilación de la Expresión Génica , Homocigoto , Humanos , Sitios de Empalme de ARNRESUMEN
Epilepsy and mental retardation limited to females (EFMR) is a disorder with an X-linked mode of inheritance and an unusual expression pattern. Disorders arising from mutations on the X chromosome are typically characterized by affected males and unaffected carrier females. In contrast, EFMR spares transmitting males and affects only carrier females. Aided by systematic resequencing of 737 X chromosome genes, we identified different protocadherin 19 (PCDH19) gene mutations in seven families with EFMR. Five mutations resulted in the introduction of a premature termination codon. Study of two of these demonstrated nonsense-mediated decay of PCDH19 mRNA. The two missense mutations were predicted to affect adhesiveness of PCDH19 through impaired calcium binding. PCDH19 is expressed in developing brains of human and mouse and is the first member of the cadherin superfamily to be directly implicated in epilepsy or mental retardation.
Asunto(s)
Cadherinas/genética , Cromosomas Humanos X , Codón sin Sentido/genética , Trastornos del Conocimiento/genética , Epilepsia/genética , Impresión Genómica , Mutación Missense/genética , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Trastornos del Conocimiento/patología , Epilepsia/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X/genética , Humanos , Hibridación in Situ , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Ratones/embriología , Linaje , Fenotipo , Protocadherinas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/citología , Piel/metabolismoRESUMEN
We have identified one frameshift mutation, one splice-site mutation, and two missense mutations in highly conserved residues in ZDHHC9 at Xq26.1 in 4 of 250 families with X-linked mental retardation (XLMR). In three of the families, the mental retardation phenotype is associated with a Marfanoid habitus, although none of the affected individuals meets the Ghent criteria for Marfan syndrome. ZDHHC9 is a palmitoyltransferase that catalyzes the posttranslational modification of NRAS and HRAS. The degree of palmitoylation determines the temporal and spatial location of these proteins in the plasma membrane and Golgi complex. The finding of mutations in ZDHHC9 suggests that alterations in the concentrations and cellular distribution of target proteins are sufficient to cause disease. This is the first XLMR gene to be reported that encodes a posttranslational modification enzyme, palmitoyltransferase. Furthermore, now that the first palmitoyltransferase that causes mental retardation has been identified, defects in other palmitoylation transferases become good candidates for causing other mental retardation syndromes.
Asunto(s)
Aciltransferasas/genética , Síndrome de Marfan/complicaciones , Síndrome de Marfan/genética , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , ADN/genética , Femenino , Humanos , Masculino , Síndrome de Marfan/enzimología , Discapacidad Intelectual Ligada al Cromosoma X/enzimología , Datos de Secuencia Molecular , Linaje , Fenotipo , Homología de Secuencia de Aminoácido , Proteínas ras/metabolismoRESUMEN
We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.
Asunto(s)
Anomalías Múltiples/genética , Proteínas Cullin/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , Ubiquitina-Proteína Ligasas/genética , Agresión , Secuencia de Aminoácidos , Niño , Preescolar , Deformidades del Pie/genética , Cabeza/anomalías , Humanos , Hipogonadismo/genética , Masculino , Datos de Secuencia Molecular , Obesidad/genética , Subunidades de Proteína/genética , Convulsiones/genética , Temblor/genéticaRESUMEN
In the course of systematic screening of the X-chromosome coding sequences in 250 families with nonsyndromic X-linked mental retardation (XLMR), two families were identified with truncating mutations in BRWD3, a gene encoding a bromodomain and WD-repeat domain-containing protein. In both families, the mutation segregates with the phenotype in affected males. Affected males have macrocephaly with a prominent forehead, large cupped ears, and mild-to-moderate intellectual disability. No truncating variants were found in 520 control X chromosomes. BRWD3 is therefore a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation.
Asunto(s)
Anomalías Múltiples/genética , Cabeza/anomalías , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , Factores de Transcripción/genética , Humanos , Masculino , Linaje , Alineación de SecuenciaRESUMEN
Chromosome deletions in the mouse have proven invaluable in the dissection of gene function. The brown deletion complex comprises >28 independent genome rearrangements, which have been used to identify several functional loci on chromosome 4 required for normal embryonic and postnatal development. We have constructed a 172-bacterial artificial chromosome contig that spans this 22-megabase (Mb) interval and have produced a contiguous, finished, and manually annotated sequence from these clones. The deletion complex is strikingly gene-poor, containing only 52 protein-coding genes (of which only 39 are supported by human homologues) and has several further notable genomic features, including several segments of >1 Mb, apparently devoid of a coding sequence. We have used sequence polymorphisms to finely map the deletion breakpoints and identify strong candidate genes for the known phenotypes that map to this region, including three lethal loci (l4Rn1, l4Rn2, and l4Rn3) and the fitness mutant brown-associated fitness (baf). We have also characterized misexpression of the basonuclin homologue, Bnc2, associated with the inversion-mediated coat color mutant white-based brown (B(w)). This study provides a molecular insight into the basis of several characterized mouse mutants, which will allow further dissection of this region by targeted or chemical mutagenesis.
Asunto(s)
Deleción Cromosómica , Glicoproteínas de Membrana/genética , Oxidorreductasas/genética , Animales , Secuencia de Bases , Evolución Biológica , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Femenino , Muerte Fetal/genética , Genes Letales , Color del Cabello/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Fenotipo , Polimorfismo de Nucleótido Simple , EmbarazoRESUMEN
The protein kinase gene family is the most frequently mutated in human cancer. Previous work has documented activating mutations in the KIT receptor tyrosine kinase in testicular germ-cell tumors (TGCT). To investigate further the potential role of mutated protein kinases in the development of TGCT and to characterize the prevalence and patterns of point mutations in these tumors, we have sequenced the coding exons and splice junctions of the annotated protein kinase family of 518 genes in a series of seven seminomas and six nonseminomas. Our results show a remarkably low mutation frequency, with only a single somatic point mutation, a K277E mutation in the STK10 gene, being identified in a total of more than 15 megabases of sequence analyzed. Sequencing of STK10 in an additional 40 TGCTs revealed no further mutations. Comparative genomic hybridization and LOH analysis using SNP arrays demonstrated that the 13 TGCTs mutationally screened through the 518 protein kinase genes were uniformly aneuploid with consistent chromosomal gains on 12p, 8q, 7, and X and losses on 13q, 18q, 11q, and 4q. Our results do not provide evidence for a mutated protein kinase implicated in the development of TGCT other than KIT. Moreover, they demonstrate that the general prevalence of point mutations in TGCT is low, in contrast to the high frequency of copy number changes.
Asunto(s)
Neoplasias de Células Germinales y Embrionarias/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Seminoma/genética , Neoplasias Testiculares/genética , Adolescente , Adulto , Aberraciones Cromosómicas , Exones , Dosificación de Gen , Humanos , Masculino , Persona de Mediana Edad , Mutación PuntualRESUMEN
In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.