Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7279, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142637

RESUMEN

Three-dimensional image analyses are required to improve the understanding of the regulation of blood vessel formation and heterogeneity. Currently, quantitation of 3D endothelial structures or vessel branches is often based on 2D projections of the images losing their volumetric information. Here, we developed SproutAngio, a Python-based open-source tool, for fully automated 3D segmentation and analysis of endothelial lumen space and sprout morphology. To test the SproutAngio, we produced a publicly available in vitro fibrin bead assay dataset with a gradually increasing VEGF-A concentration ( https://doi.org/10.5281/zenodo.7240927 ). We demonstrate that our automated segmentation and sprout morphology analysis, including sprout number, length, and nuclei number, outperform the widely used ImageJ plugin. We also show that SproutAngio allows a more detailed and automated analysis of the mouse retinal vasculature in comparison to the commonly used radial expansion measurement. In addition, we provide two novel methods for automated analysis of endothelial lumen space: (1) width measurement from tip, stalk and root segments of the sprouts and (2) paired nuclei distance analysis. We show that these automated methods provided important additional information on the endothelial cell organization in the sprouts. The pipelines and source code of SproutAngio are publicly available ( https://doi.org/10.5281/zenodo.7381732 ).


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Ratones , Animales , Neovascularización Fisiológica/fisiología , Endotelio , Fenómenos Fisiológicos Cardiovasculares , Informática
2.
Phys Med Biol ; 53(11): 2877-96, 2008 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-18460748

RESUMEN

This paper presents a novel statistical approach for joint estimation of regions-of-interest (ROIs) and the corresponding time-activity curves (TACs) from dynamic positron emission tomography (PET) brain projection data. It is based on optimizing the joint objective function that consists of a data log-likelihood term and two penalty terms reflecting the available a priori information about the human brain anatomy. The developed local optimization strategy iteratively updates both the ROI and TAC parameters and is guaranteed to monotonically increase the objective function. The quantitative evaluation of the algorithm is performed with numerically and Monte Carlo-simulated dynamic PET brain data of the 11C-Raclopride and 18F-FDG tracers. The results demonstrate that the method outperforms the existing sequential ROI quantification approaches in terms of accuracy, and can noticeably reduce the errors in TACs arising due to the finite spatial resolution and ROI delineation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Simulación por Computador , Interpretación de Imagen Asistida por Computador , Algoritmos , Cerebelo/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Humanos , Funciones de Verosimilitud , Tomografía de Emisión de Positrones , Putamen/diagnóstico por imagen , Racloprida , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA