RESUMEN
The Ser and Thr kinase AKT, also known as protein kinase B (PKB), was discovered 25 years ago and has been the focus of tens of thousands of studies in diverse fields of biology and medicine. There have been many advances in our knowledge of the upstream regulatory inputs into AKT, key multifunctional downstream signaling nodes (GSK3, FoxO, mTORC1), which greatly expand the functional repertoire of AKT, and the complex circuitry of this dynamically branching and looping signaling network that is ubiquitous to nearly every cell in our body. Mouse and human genetic studies have also revealed physiological roles for the AKT network in nearly every organ system. Our comprehension of AKT regulation and functions is particularly important given the consequences of AKT dysfunction in diverse pathological settings, including developmental and overgrowth syndromes, cancer, cardiovascular disease, insulin resistance and type 2 diabetes, inflammatory and autoimmune disorders, and neurological disorders. There has also been much progress in developing AKT-selective small molecule inhibitors. Improved understanding of the molecular wiring of the AKT signaling network continues to make an impact that cuts across most disciplines of the biomedical sciences.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Quimioterapia , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Terapia Molecular Dirigida , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidoresRESUMEN
In response to hormones and growth factors, the class I phosphoinositide-3-kinase (PI3K) signalling network functions as a major regulator of metabolism and growth, governing cellular nutrient uptake, energy generation, reducing cofactor production and macromolecule biosynthesis1. Many of the driver mutations in cancer with the highest recurrence, including in receptor tyrosine kinases, Ras, PTEN and PI3K, pathologically activate PI3K signalling2,3. However, our understanding of the core metabolic program controlled by PI3K is almost certainly incomplete. Here, using mass-spectrometry-based metabolomics and isotope tracing, we show that PI3K signalling stimulates the de novo synthesis of one of the most pivotal metabolic cofactors: coenzyme A (CoA). CoA is the major carrier of activated acyl groups in cells4,5 and is synthesized from cysteine, ATP and the essential nutrient vitamin B5 (also known as pantothenate)6,7. We identify pantothenate kinase 2 (PANK2) and PANK4 as substrates of the PI3K effector kinase AKT8. Although PANK2 is known to catalyse the rate-determining first step of CoA synthesis, we find that the minimally characterized but highly conserved PANK49 is a rate-limiting suppressor of CoA synthesis through its metabolite phosphatase activity. Phosphorylation of PANK4 by AKT relieves this suppression. Ultimately, the PI3K-PANK4 axis regulates the abundance of acetyl-CoA and other acyl-CoAs, CoA-dependent processes such as lipid metabolism and proliferation. We propose that these regulatory mechanisms coordinate cellular CoA supplies with the demands of hormone/growth-factor-driven or oncogene-driven metabolism and growth.
Asunto(s)
Coenzima A , Ácido Pantoténico , Fosfatidilinositol 3-Quinasa , Acetilcoenzima A/metabolismo , Adenosina Trifosfato/metabolismo , Proliferación Celular , Coenzima A/biosíntesis , Coenzima A/química , Cisteína/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Metabolómica , Ácido Pantoténico/química , Ácido Pantoténico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de SeñalRESUMEN
Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.
Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Neoplasias de la Próstata/patología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Quinasa de la Caseína I/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Humanos , Lisina/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Neoplasias de la Próstata/metabolismo , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/genética , Alineación de Secuencia , UbiquitinaciónRESUMEN
In this issue of Molecular Cell, Liu et al. (2018) show that PI34P2 and PIP3, the lipid products of class I phosphoinositide 3-kinase (PI3K), display distinct spatiotemporal kinetics in cells that result in differential activation of the effectors AKT1, AKT2, and AKT3.
Asunto(s)
Fosfatidilinositol 3-Quinasas , Fosfatidilinositoles , Fosfatidilinositol 3-Quinasa , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-aktRESUMEN
Following 3 decades of extensive research into PI3K signaling, it is now evidently clear that the underlying network does not equate to a simple ON/OFF switch. This is best illustrated by the multifaceted nature of the many diseases associated with aberrant PI3K signaling, including common cancers, metabolic disease, and rare developmental disorders. However, we are still far from a complete understanding of the fundamental control principles that govern the numerous phenotypic outputs that are elicited by activation of this well-characterized biochemical signaling network, downstream of an equally diverse set of extrinsic inputs. At its core, this is a question on the role of PI3K signaling in cellular information processing and decision making. Here, we review the determinants of accurate encoding and decoding of growth factor signals and discuss outstanding questions in the PI3K signal relay network. We emphasize the importance of quantitative biochemistry, in close integration with advances in single-cell time-resolved signaling measurements and mathematical modeling.
Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Humanos , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Biología de Sistemas , Familia de Proteínas EGF/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Enfermedades Metabólicas/metabolismoRESUMEN
The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Complejos Multiproteicos/metabolismo , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteína de Retinoblastoma/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Ciclina D/genética , Ciclina D/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Activación Enzimática , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , TransfecciónRESUMEN
A PI3Kα-selective inhibitor has recently been approved for use in breast tumors harboring mutations in PIK3CA, the gene encoding p110α. Preclinical studies have suggested that the PI3K/AKT/mTOR signaling pathway influences stemness, a dedifferentiation-related cellular phenotype associated with aggressive cancer. However, to date, no direct evidence for such a correlation has been demonstrated in human tumors. In two independent human breast cancer cohorts, encompassing nearly 3,000 tumor samples, transcriptional footprint-based analysis uncovered a positive linear association between transcriptionally-inferred PI3K/AKT/mTOR signaling scores and stemness scores. Unexpectedly, stratification of tumors according to PIK3CA genotype revealed a "biphasic" relationship of mutant PIK3CA allele dosage with these scores. Relative to tumor samples without PIK3CA mutations, the presence of a single copy of a hotspot PIK3CA variant was associated with lower PI3K/AKT/mTOR signaling and stemness scores, whereas the presence of multiple copies of PIK3CA hotspot mutations correlated with higher PI3K/AKT/mTOR signaling and stemness scores. This observation was recapitulated in a human cell model of heterozygous and homozygous PIK3CAH1047R expression. Collectively, our analysis (1) provides evidence for a signaling strength-dependent PI3K-stemness relationship in human breast cancer; (2) supports evaluation of the potential benefit of patient stratification based on a combination of conventional PI3K pathway genetic information with transcriptomic indices of PI3K signaling activation.
Asunto(s)
Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma , Neoplasias de la Mama/metabolismo , Femenino , Genotipo , HumanosRESUMEN
In this issue of Molecular Cell, Wang et al. (2014) report that the splicing kinase SRPK1 can function as both an oncogene and a tumor suppressor by modulating the activation state of the protein kinase Akt. This is shown to be mediated by the ability of SRPK1 to bind to the Akt phosphatase PHLPP1.
Asunto(s)
Carcinogénesis/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Femenino , Humanos , MasculinoRESUMEN
Oncogenic mutations in PIK3CA, the gene encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), occur with high frequency in breast cancer. The protein kinase Akt is considered to be the primary effector of PIK3CA, although mechanisms by which PI3K mediates Akt-independent tumorigenic signals remain obscure. We show that serum and glucocorticoid-regulated kinase 3 (SGK3) is amplified in breast cancer and activated downstream of PIK3CA in a manner dependent on the phosphoinositide phosphatase INPP4B. Expression of INPP4B leads to enhanced SGK3 activation and suppression of Akt phosphorylation. Activation of SGK3 downstream of PIK3CA and INPP4B is required for 3D proliferation, invasive migration, and tumorigenesis in vivo. We further show that SGK3 targets the metastasis suppressor NDRG1 for degradation by Fbw7. We propose a model in which breast cancers harboring oncogenic PIK3CA activate SGK3 signaling while suppressing Akt, indicative of oncogenic functions for both INPP4B and SGK3 in these tumors.
Asunto(s)
Neoplasias de la Mama/enzimología , Fosfatidilinositol 3-Quinasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Activación Enzimática , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Desnudos , Mutación , Células 3T3 NIH , Invasividad Neoplásica , Trasplante de Neoplasias , Fosfatidilinositol 3-Quinasas/fisiología , Procesamiento Proteico-Postraduccional , Proteolisis , Transducción de SeñalRESUMEN
Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC.
Asunto(s)
Poliaminas Biogénicas/biosíntesis , Citotoxinas/farmacología , Eflornitina/farmacología , Proteínas de Neoplasias , Inhibidores de la Ornitina Descarboxilasa/farmacología , Ornitina Descarboxilasa/metabolismo , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Femenino , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers, and is closely associated with poor prognosis and chemo- or radiotherapeutic resistance. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.
Asunto(s)
Ciclo Celular/fisiología , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/genética , Proliferación Celular , Ciclina A2/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Activación Enzimática , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Complejos Multiproteicos/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Bulbo Olfatorio/citología , Bulbo Olfatorio/enzimología , Bulbo Olfatorio/metabolismo , Proteína Oncogénica v-akt/química , Proteína Oncogénica v-akt/metabolismo , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The activities of both mTORC1 and mTORC2 are negatively regulated by their endogenous inhibitor, DEPTOR. As such, the abundance of DEPTOR is a critical determinant in the activity status of the mTOR network. DEPTOR stability is governed by the 26S-proteasome through a largely unknown mechanism. Here we describe an mTOR-dependent phosphorylation-driven pathway for DEPTOR destruction via SCF(ßTrCP). DEPTOR phosphorylation by mTOR in response to growth signals, and in collaboration with casein kinase I (CKI), generates a phosphodegron that binds ßTrCP. Failure to degrade DEPTOR through either degron mutation or ßTrCP depletion leads to reduced mTOR activity, reduced S6 kinase activity, and activation of autophagy to reduce cell growth. This work expands the current understanding of mTOR regulation by revealing a positive feedback loop involving mTOR and CKI-dependent turnover of its inhibitor, DEPTOR, suggesting that misregulation of the DEPTOR destruction pathway might contribute to aberrant activation of mTOR in disease.
Asunto(s)
Proteínas Ligasas SKP Cullina F-box/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fosforilación , Transducción de Señal , TransfecciónRESUMEN
Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.
Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Mutación/genética , Translocación Genética/genética , Algoritmos , Neoplasias de la Mama/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/genética , Análisis Mutacional de ADN , Exoma/genética , Femenino , Fusión Génica/genética , Humanos , Proteínas de la Membrana/genética , México , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , VietnamRESUMEN
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is frequently deregulated in cancer. Downstream of PI3K, Akt1 and Akt2 have opposing roles in breast cancer invasive migration, leading to metastatic dissemination. Here, we identify palladin, an actin-associated protein, as an Akt1-specific substrate that modulates breast cancer cell invasive migration. Akt1, but not Akt2, phosphorylates palladin at Ser507 in a domain that is critical for F-actin bundling. Downregulation of palladin enhances migration and invasion of breast cancer cells and induces abnormal branching morphogenesis in 3D cultures. Palladin phosphorylation at Ser507 is required for Akt1-mediated inhibition of breast cancer cell migration and also for F-actin bundling, leading to the maintenance of an organized actin cytoskeleton. These findings identify palladin as an Akt1-specific substrate that regulates cell motility and provide a molecular mechanism that accounts for the functional distinction between Akt isoforms in breast cancer cell signaling to cell migration.
Asunto(s)
Actinas/metabolismo , Neoplasias de la Mama/enzimología , Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Forma de la Célula , Proteínas del Citoesqueleto/genética , Activación Enzimática , Femenino , Células HeLa , Humanos , Mutación , Invasividad Neoplásica , Fosfoproteínas/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Serina , Transducción de Señal , Esferoides Celulares , Especificidad por Sustrato , TransfecciónRESUMEN
The Rictor/mTOR complex (also known as mTORC2) plays a critical role in cellular homeostasis by phosphorylating AGC kinases such as Akt and SGK at their hydrophobic motifs to activate downstream signaling. However, the regulation of mTORC2 and whether it has additional function(s) remain largely unknown. Here, we report that Rictor associates with Cullin-1 to form a functional E3 ubiquitin ligase. Rictor, but not Raptor or mTOR alone, promotes SGK1 ubiquitination. Loss of Rictor/Cullin-1-mediated ubiquitination leads to increased SGK1 protein levels as detected in Rictor null cells. Moreover, as part of a feedback mechanism, phosphorylation of Rictor at T1135 by multiple AGC kinases disrupts the interaction between Rictor and Cullin-1 to impair SGK1 ubiquitination. These findings indicate that the Rictor/Cullin-1 E3 ligase activity is regulated by a specific signal relay cascade and that misregulation of this mechanism may contribute to the frequent overexpression of SGK1 in various human cancers.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitinación , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/genética , Línea Celular Tumoral , Proteínas Cullin/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
In a recent issue of Molecular Cell, Hong et al. (2008) describe an alternative mechanism by which mTOR promotes cell-cycle progression; it phosphorylates and activates SGK, which in turn phosphorylates the cell-cycle inhibitor p27, promoting its cytoplasmic retention.
Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Neoplasias/enzimología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Ciclo Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Activación Enzimática , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Serina-Treonina Quinasas TORRESUMEN
Aberrant activation of fundamental cellular processes, such as proliferation, migration and survival, underlies the development of numerous human pathophysiologies, including cancer. One of the most frequently hyperactivated pathways in cancer is the phosphoinositide 3-kinase (PI3K)/Akt signalling cascade. Three isoforms of the serine/threonine protein kinase Akt (Akt1, Akt2 and Akt3) function to regulate cell survival, growth, proliferation and metabolism. Strikingly, non-redundant and even opposing functions of Akt isoforms in the regulation of phenotypes associated with malignancy in humans have been described. However, the mechanisms by which Akt isoform-specificity is conferred are largely unknown. In the present review, we highlight recent findings that have contributed to our understanding of the complexity of Akt isoform-specific signalling and discussed potential mechanisms by which this isoform-specificity is conferred. An understanding of the mechanisms of Akt isoform-specificity has important implications for the development of isoform-specific Akt inhibitors and will be critical to finding novel targets to treat disease.
Asunto(s)
Neoplasias de la Mama/enzimología , Modelos Biológicos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Supervivencia Celular , Femenino , HumanosRESUMEN
Cellular signal transduction comprises a complex series of biochemical reactions by which extracellular signals such as growth factors, hormones, cytokines, and neurotransmitters are translated into specific intracellular responses. Signal transduction is mediated by protein kinase phosphorylation cascades that culminate in the regulation of numerous cellular responses, including division, differentiation, migration, and survival. Importantly, signal relay pathways are dysregulated in human diseases, making the study of signal transduction important for both uncovering basic biology and understanding pathophysiology. Established laboratory cell culture models are useful for studying signal transduction mechanisms, but differences in sample handling procedures can introduce unwanted variability in experimental outcomes and conclusions. One such potential source of experimental variability is the introduction of fluid shear stress upon handling of tissue culture cells. Fluid shear stress triggers a wide range of cellular responses in adherent cell culture, including stimulating the production of cyclic AMP, potentiating the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), and ultimately inducing changes in the gene expression of growth and remodeling factors. Further, mechanical stress on cells is physiologically relevant to the development of many pathologies. Here, we describe a detailed protocol for cell lysis and protein extraction that minimizes shear stress induced by classical cell harvest protocols. We also highlight the impact of fluid shear stress by using immunoblotting to assess ERK pathway activation as a readout for this protocol. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Gentle cell lysis and protein extraction Basic Protocol 2: Immunoblotting for cell signaling readouts by SDS-PAGE.