Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 456(2): 201-211, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31479647

RESUMEN

In many spiralians, asymmetry in the first two cleavages is achieved through the formation of a polar lobe (PL), which transiently constricts to sequester vegetal cytoplasm into the CD and D blastomeres. While microtubules and actin filaments are required for polar lobe formation, little else is known regarding the structural and functional similarities with the contractile ring, or how the PL constriction is able to form perpendicular to the cleavage plane. Examination of scallop embryos revealed that while activated myosin II could be detected in both the cleavage furrow and early PL constriction, astral or central spindle microtubules were not observed associated with the PL neck until the constriction was nearly complete. Further, inhibition of Aurora B had no effect on polar lobe initiation, but blocked both contractile ring ingression and PL constriction beyond phase II. The cortex destined for PL sequestration was marked by enrichment of the Arp2/3 complex, which was first detected during meiosis and remained enriched at the vegetal pole through the first two cleavages. Inhibition of Arp2/3 affected PL formation and partitioning of cytoplasm into the two daughter cells, suggesting that Arp2/3 plays a functional role in defining the zone of cortex to be sequestered into the polar lobe. Together, these data offer for the first time a mechanism by which a cytoskeletal specialization defines the polar lobe in this atypical form of asymmetric cell division.


Asunto(s)
División Celular/fisiología , Crassostrea/embriología , Pectinidae/embriología , Actinas/metabolismo , Actinas/fisiología , Animales , Blastómeros , Polaridad Celular/fisiología , Crassostrea/metabolismo , Citocinesis , Citoesqueleto/metabolismo , Microtúbulos/fisiología , Morfogénesis , Miosina Tipo II/metabolismo , Miosina Tipo II/fisiología , Pectinidae/metabolismo , Transducción de Señal
2.
Dev Biol ; 437(2): 140-151, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29555242

RESUMEN

In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis.


Asunto(s)
Mesodermo/metabolismo , Morfogénesis/genética , Proteína de Unión al GTP cdc42/metabolismo , Animales , Técnicas de Cultivo de Célula , Movimiento Celular/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Erizos de Mar
3.
Mol Biol Cell ; 33(14): ar138, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200848

RESUMEN

Experimental and computational studies pinpoint rate-limiting step(s) in metastasis governed by Rac1. Using ovarian cancer cell and animal models, Rac1 expression was manipulated, and quantitative measurements of cell-cell and cell-substrate adhesion, cell invasion, mesothelial clearance, and peritoneal tumor growth discriminated the tumor behaviors most highly influenced by Rac1. The experimental data were used to parameterize an agent-based computational model simulating peritoneal niche colonization, intravasation, and hematogenous metastasis to distant organs. Increased ovarian cancer cell survival afforded by the more rapid adhesion and intravasation upon Rac1 overexpression is predicted to increase the numbers of and the rates at which tumor cells are disseminated to distant sites. Surprisingly, crowding of cancer cells along the blood vessel was found to decrease the numbers of cells reaching a distant niche irrespective of Rac1 overexpression or knockdown, suggesting that sites for tumor cell intravasation are rate limiting and become accessible if cells intravasate rapidly or are displaced due to diminished viability. Modeling predictions were confirmed through animal studies of Rac1-dependent metastasis to the lung. Collectively, the experimental and modeling approaches identify cell adhesion, rapid intravasation, and survival in the blood as parameters in the ovarian metastatic cascade that are most critically dependent on Rac1.


Asunto(s)
Neoplasias Ováricas , Humanos , Animales , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Adhesión Celular , Pulmón/metabolismo , Análisis de Sistemas , Proteína de Unión al GTP rac1/metabolismo , Metástasis de la Neoplasia/patología , Movimiento Celular
4.
Methods Cell Biol ; 151: 379-397, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30948020

RESUMEN

The rapid development, simplicity and optical clarity of the sea urchin embryo make it an excellent model system for studying the dynamic events of early development. An ever-growing palette of fluorescent proteins and biosensors can now be applied to studying sea urchin development, and there are now a wide variety of imaging modes that can be employed to image sea urchin embryogenesis. However, when performing live-cell imaging, one must take into consideration the sensitivity of embryos (and fluorescent probes) to the intense light associated with confocal microscopes. Here, we discuss general considerations for keeping embryos viable on the microscope stage, as well as probes for imaging cellular membranes and the cytoskeleton. We compare the relative merits of different confocal microscopes for live imaging of embryos and describe the potential for live-cell super-resolution microscopy.


Asunto(s)
Desarrollo Embrionario/genética , Microscopía Confocal/métodos , Imagen Óptica/métodos , Erizos de Mar/ultraestructura , Animales , Citoesqueleto/ultraestructura , Embrión no Mamífero , Colorantes Fluorescentes/química , Microtúbulos/ultraestructura , Erizos de Mar/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA