Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675441

RESUMEN

An inflammation-resolving polysialic acid-decorated PLGA nanoparticle (PolySia-NP) has been developed to treat geographic atrophy/age-related macular degeneration and other conditions caused by macrophage and complement over-activation. While PolySia-NPs have demonstrated pre-clinical efficacy, this study evaluated its systemic and intraocular safety. PolySia-NPs were evaluated in vitro for mutagenic activity using Salmonella strains and E. coli, with and without metabolic activation; cytotoxicity was evaluated based on its interference with normal mitosis. PolySia-NPs were administered intravenously in CD-1 mice and Sprague Dawley rats and assessed for survival and toxicity. Intravitreal (IVT) administration in Dutch Belted rabbits and non-human primates was assessed for ocular or systemic toxicity. In vitro results indicate that PolySia-NPs did not induce mutagenicity or cytotoxicity. Intravenous administration did not show clastogenic activity, effects on survival, or toxicity. A single intravitreal (IVT) injection and two elevated repeat IVT doses of PolySia-NPs separated by 7 days in rabbits showed no signs of systemic or ocular toxicity. A single IVT inoculation of PolySia-NPs in non-human primates demonstrated no adverse clinical or ophthalmological effects. The demonstration of systemic and ocular safety of PolySia-NPs supports its advancement into human clinical trials as a promising therapeutic approach for systemic and retinal degenerative diseases caused by chronic immune activation.

2.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38139861

RESUMEN

Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.

3.
Expert Opin Investig Drugs ; 31(10): 1067-1085, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962560

RESUMEN

INTRODUCTION: Intravitreal anti-vascular endothelial growth factor (VEGF) injections for exudative age-related macular degeneration (eAMD) are effective and safe but require frequent injections and have nonresponding patients. Geographic atrophy/dry AMD (gaAMD) remains an unmet medical need. New therapies are needed to address this leading cause of blindness in the increasing aged population. AREAS COVERED: This paper reviews the pathogenesis of macular degeneration, current and failed therapeutics, therapies undergoing clinical trials and a rationale for why certain AMD therapies may succeed or fail. EXPERT OPINION: VEGF-inhibitors reduce both vascular leakage and neovascularization. Experimental therapies that only address neovascularization or leakage will unlikely supplant anti-VEGF therapies. The most promising future therapies for eAMD, are those that target, more potently inhibit and have a more sustained effect on the VEGF pathway such as KSI-301, RGX-314, CLS-AX, EYEP-1901, OTX-TKI. GaAMD is a phenotype of phagocytic retinal cell loss. Inhibiting phagocytic activity of retinal microglial/macrophages at the border of geographic atrophy and reducing complement derived activators of microglial/macrophage is the most promising strategy. Complement inhibitors (Pegcetacoplan and Avacincaptad pegol) will likely obtain FDA approval but will serve to pave the way for combined complement and direct phagocytic inhibitors such as AVD-104.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , Degeneración Macular Húmeda , Inhibidores de la Angiogénesis/uso terapéutico , Inactivadores del Complemento , Drogas en Investigación/uso terapéutico , Atrofia Geográfica/tratamiento farmacológico , Humanos , Inyecciones Intravítreas , Degeneración Macular/tratamiento farmacológico , Péptidos Cíclicos , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Degeneración Macular Húmeda/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA