Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33320934

RESUMEN

Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is recognized as an extremely powerful tool to study the interaction of numerous transcription factors and other chromatin-associated proteins with DNA. The core problem in the optimization of ChIP-seq protocol and the following computational data analysis is that a 'true' pattern of binding events for a given protein factor is unknown. Computer simulation of the ChIP-seq process based on 'a-priory known binding template' can contribute to a drastically reduce the number of wet lab experiments and finally help achieve radical optimization of the entire processing pipeline. We present a newly developed ChIP-sequencing simulation algorithm implemented in the novel software, in silico ChIP-seq (isChIP). We demonstrate that isChIP closely approximates real ChIP-seq protocols and is able to model data similar to those obtained from experimental sequencing. We validated isChIP using publicly available datasets generated for well-characterized transcription factors Oct4 and Sox2. Although the novel software is compatible with the Illumina protocols by default, it can also successfully perform simulations with a number of alternative sequencing platforms such as Roche454, Ion Torrent and SOLiD as well as model ChIP -Exo. The versatility of isChIP was demonstrated through modelling a wide range of binding events, including those of transcription factors and chromatin modifiers. We also performed a comparative analysis against a few existing ChIP-seq simulators and showed the fundamental superiority of our model. Due to its ability to utilize known binding templates, isChIP can potentially be employed to help investigators choose the most appropriate analytical software through benchmarking of available ChIP-seq programs and optimize the experimental parameters of ChIP-seq protocol. isChIP software is freely available at https://github.com/fnaumenko/isChIP.


Asunto(s)
Algoritmos , Secuenciación de Inmunoprecipitación de Cromatina , Simulación por Computador , Programas Informáticos
2.
Stem Cells ; 32(6): 1515-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24585688

RESUMEN

Cardiac muscle differentiation in vivo is guided by sequential growth factor signals, including endoderm-derived diffusible factors, impinging on cardiogenic genes in the developing mesoderm. Previously, by RNA interference in AB2.2 mouse embryonic stem cells (mESCs), we identified the endodermal transcription factor Sox17 as essential for Mesp1 induction in primitive mesoderm and subsequent cardiac muscle differentiation. However, downstream effectors of Sox17 remained to be proven functionally. In this study, we used genome-wide profiling of Sox17-dependent genes in AB2.2 cells, RNA interference, chromatin immunoprecipitation, and luciferase reporter genes to dissect this pathway. Sox17 was required not only for Hhex (a second endodermal transcription factor) but also for Cer1, a growth factor inhibitor from endoderm that, like Hhex, controls mesoderm patterning in Xenopus toward a cardiac fate. Suppressing Hhex or Cer1 blocked cardiac myogenesis, although at a later stage than induction of Mesp1/2. Hhex was required but not sufficient for Cer1 expression. Over-expression of Sox17 induced endogenous Cer1 and sequence-specific transcription of a Cer1 reporter gene. Forced expression of Cer1 was sufficient to rescue cardiac differentiation in Hhex-deficient cells. Thus, Hhex and Cer1 are indispensable components of the Sox17 pathway for cardiopoiesis in mESCs, acting at a stage downstream from Mesp1/2.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas HMGB/metabolismo , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Miocardio/metabolismo , Proteínas/metabolismo , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Tipificación del Cuerpo/efectos de los fármacos , Diferenciación Celular/genética , Citocinas , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma , Subunidades beta de Inhibinas/metabolismo , Mesodermo/citología , Ratones , Modelos Biológicos , Desarrollo de Músculos/genética , Miocardio/citología , Proteína Nodal/metabolismo , Unión Proteica/genética , Transducción de Señal/genética
3.
J Gene Med ; 14(3): 158-68, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22228595

RESUMEN

BACKGROUND: Choroideremia (CHM) is a progressive X-linked degeneration of three ocular layers: photoreceptors, retinal pigment epithelium (RPE) and choroid, caused by the loss of Rab Escort Protein-1 (REP1). As a recessive monogenic disorder, CHM is potentially curable by gene addition therapy. The present study aimed to evaluate the potential use of lentiviral vectors carrying CHM/REP1 cDNA transgene for CHM treatment. METHODS: We generated lentiviral vectors carrying either CHM/REP1 cDNA or EGFP transgene under the control of the elongation factor-1α promoter (EF-1α) or its shortened version EFS. We transduced human (HT1080) and dog (D17) cells, CHM patient's fibroblasts and mouse primary RPE cells in vitro, as well as wild-type and CHM mouse retinas in vivo by subretinal injections. Transgene expression was confirmed by immunoblotting, fluorescence-activated cell sorting, immunofluorescence and confocal microscopy. CHM/REP1 transgene functionality was assessed by an in vitro prenylation assay. RESULTS: Lentiviral vectors with CHM/REP1 and EGFP transgenes efficiently transduced HT1080, D17 and CHM fibroblast cells; CHM/REP1 transgene lead to an increase in prenylation activity. Subretinal injections of lentiviral vectors into mouse retinas resulted in efficient transduction of the RPE (30-35% of total RPE cells transduced after a 1-µl injection), long-term expression for at least 6 months and a decrease in amount of unprenylated Rabs in the CHM RPE. Transduction of neuroretinal cells was restricted to the injection site. CONCLUSIONS: Lentiviral CHM/REP1 cDNA transgene rescues the prenylation defect in CHM mouse RPE and thus could be used to restore REP1 activity in the RPE of CHM patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Coroideremia/metabolismo , Coroideremia/terapia , Terapia Genética/métodos , Epitelio Pigmentado de la Retina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Coroideremia/genética , ADN Complementario/genética , Fibroblastos , Vectores Genéticos/genética , Lentivirus , Ratones , Transducción Genética
4.
Methods Mol Biol ; 542: 117-29, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19565899

RESUMEN

Nonviral gene therapy vectors are commonly based on recombinant bacterial plasmids or their derivatives. The plasmids are propagated in bacteria, so, in addition to their therapeutic cargo, they necessarily contain a bacterial replication origin and a selection marker, usually a gene conferring antibiotic resistance. Structural and maintenance plasmid stability in bacteria is required for the plasmid DNA production and can be achieved by carefully choosing a combination of the therapeutic DNA sequences, replication origin, selection marker, and bacterial strain. The use of appropriate promoters, other regulatory elements, and mammalian maintenance devices ensures that the therapeutic gene or genes are adequately expressed in target human cells. Optimal immune response to the plasmid vectors can be modulated via inclusion or exclusion of DNA sequences containing immunostimulatory CpG sequence motifs. DNA fragments facilitating construction of plasmid vectors should also be considered for inclusion in the design of plasmid vectors. Techniques relying on site-specific or homologous recombination are preferred for construction of large plasmids (>15 kb), while digestion of DNA by restriction enzymes with subsequent ligation of the resulting DNA fragments continues to be the mainstream approach for generation of small- and medium-size plasmids. Rapid selection of a desired recombinant plasmid against a background of other plasmids continues to be a challenge. In this chapter, the emphasis is placed on efficient and flexible versions of DNA cloning protocols using selection of recombinant plasmids by restriction endonucleases directly in the ligation mixture.


Asunto(s)
Clonación Molecular/métodos , Vectores Genéticos/genética , Plásmidos/genética , Animales , Humanos , Recombinación Genética/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Replicón
5.
Med Hypotheses ; 68(2): 328-31, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16997496

RESUMEN

The generation of synthetic therapeutic gene vectors requires the coupling of DNA to transfer-promoting peptides including cellular receptor ligands, protein transduction domains, hydrophobic peptides for attachment to lipid membranes, nuclear localisation signals, cytoskeleton attachment motifs, nuclear matrix association elements and immune evasion moieties. Existing methods of peptide-DNA joining often interfere with transgene expression and, therefore, are inadequate for production of effective therapeutic vector complexes, particularly destined for gene delivery in the challenging environment in vivo. However, there is a natural mechanism for rigid coupling of polypeptides with DNA. Some bacterial and eukaryotic linear plasmids, adenoviruses and a number of bacteriophages including phi29 of Bacillus subtilis and PRD1 of Escherichia coli use terminal proteins covalently bound to 5' DNA ends to prime replication. Inverted terminal DNA repeats, normally short DNA sequences, contain all the sequences required in cis for the covalent coupling reaction. The complex of the terminal protein, DNA polymerase and some known auxiliary proteins supplies sufficient trans-functions, thus enabling simple linking of the terminal proteins to DNA in vitro. We hypothesise that chimeric fusion proteins, constructed on the basis of terminal proteins of adenoviruses, linear plasmids or bacteriophages with protein-primed replication, can on the one hand retain the ability to bind covalently 5' DNA termini in conditions established previously for protein-primed replication in vitro, and on the other hand confer gene transfer facilitating properties and enhanced longevity of efficient transgene expression. Terminal localisation of the chimeric proteins can ensure that they do not interfere with transgene transcription. At the same time a covalent bond between polypeptide and DNA can provide rigid coupling ensuring their stable association en route to nuclei. Bound to 5'-ends of the delivered DNA, terminal protein-based chimeras could also protect the vector DNA from 5'-3' and possibly 3'-5' exonuclease attack, thus limiting its intracellular degradation and increasing longevity of transgene expression. Our hypothesis can be tested by measuring the gene transfer efficiency of the novel complexes containing linear DNA fragments with covalently linked multifunctional chimeric terminal proteins, using previously described synthetic gene vectors as standards.


Asunto(s)
Regiones no Traducidas 5' , ADN/genética , Terapia Genética/métodos , Proteínas Mutantes Quiméricas , Vectores Genéticos , Modelos Genéticos
6.
BMC Biotechnol ; 6: 17, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16529656

RESUMEN

BACKGROUND: Minicircle DNA is the non-replicating product of intramolecular site-specific recombination within a bacterial minicircle producer plasmid. Minicircle DNA can be engineered to contain predominantly human sequences which have a low content of CpG dinucleotides and thus reduced immunotoxicity for humans, whilst the immunogenic bacterial origin and antibiotic resistance marker gene sequences are entirely removed by site-specific recombination. This property makes minicircle DNA an excellent vector for non-viral gene therapy. Large-scale production of minicircle DNA requires a bacterial strain expressing tightly controlled site-specific recombinase, such as Cre recombinase. As recombinant plasmids tend to be more stable in RecA-deficient strains, we aimed to construct a recA- bacterial strain for generation of minicircle vector DNA with less chance of unwanted deletions. RESULTS: We describe here the construction of the RecA-deficient minicircle DNA producer Escherichia coli HB101Cre with a chromosomally located Cre recombinase gene under the tight control of the araC regulon. The Cre gene expression cassette was inserted into the chromosomal lacZ gene by creating transient homologous recombination proficiency in the recA- strain HB101 using plasmid-born recET genes and homology-mediated chromosomal "pop-in, pop-out" of the plasmid pBAD75Cre containing the Cre gene and a temperature sensitive replication origin. Favourably for the Cre gene placement, at the "pop-out" step, the observed frequency of RecET-led recombination between the proximal regions of homology was 10 times higher than between the distal regions. Using the minicircle producing plasmid pFIXluc containing mutant loxP66 and loxP71 sites, we isolated pure minicircle DNA from the obtained recA- producer strain HB101Cre. The minicircle DNA preparation consisted of monomeric and, unexpectedly, also multimeric minicircle DNA forms, all containing the hybrid loxP66/71 site 5'-TACCGTTCGT ATAATGTATG CTATACGAAC GGTA-3', which was previously shown to be an inefficient partner in Cre-mediated recombination. CONCLUSION: Using transient RecET-driven recombination we inserted a single copy of the araC controlled Cre gene into the lacZ gene on the chromosome of E. coli recA- strain HB101. The resultant recA- minicircle DNA producer strain HB101Cre was used to obtain pure minicircle DNA, consisting of monomeric and multimeric minicircle forms. The obtained recA- minicircle DNA producer strain is expected to decrease the risk of undesired deletions within minicircle producer plasmids and, therefore, to improve production of the therapeutic minicircle vectors.


Asunto(s)
ADN Circular/genética , Escherichia coli/genética , Marcación de Gen/métodos , Vectores Genéticos , Integrasas/genética , Recombinación Genética , Proteínas Virales/genética , Cromosomas Bacterianos , ADN Circular/biosíntesis , ADN Circular/aislamiento & purificación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Genoma Bacteriano , Integrasas/metabolismo , Plásmidos , Rec A Recombinasas/genética , Proteínas Virales/metabolismo
7.
BMC Cardiovasc Disord ; 6: 25, 2006 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-16756651

RESUMEN

BACKGROUND: Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. METHODS: To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin and the polycation transduction enhancer Transfectam. The EGFP-positive transduced cells were then enriched by flow cytometry. RESULTS: More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. CONCLUSION: The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.


Asunto(s)
Conexina 43/genética , Mioblastos Esqueléticos/fisiología , Miocitos Cardíacos/fisiología , Transfección/métodos , Animales , Línea Celular , Conexina 43/metabolismo , Electromiografía , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Masculino , Plásmidos/genética , Ratas , Ratas Wistar , Retroviridae/genética
8.
Med Hypotheses ; 67(4): 807-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16759811

RESUMEN

Mammalian retroviral gene vectors are of particular importance in gene therapy because of their efficient chromosomal integration and resulting stable maintenance of transgenes. These vectors are currently produced in mammalian cells, with low yield and at substantial expense. Therefore, a more efficient heterologous production system for retroviral vectors would be desirable. With their impressive track record in biotechnology, various yeast species appear like ideal organisms to generate retroviral vectors. Typically, retroviral vector particles emerge from mammalian cells after budding at the plasma membrane. However, in yeast, viral budding at the plasma membrane is blocked by the cell wall. At the same time, mass production of enveloped viral vectors in yeast protoplasts is technically challenging. Recent reports indicated the generation of infectious virions via intracellular budding for some combinations of retroviruses and mammalian cells. Relying on these data I hypothesise that a successful assembly of the retroviral transducing particles can be accomplished intracellularly inside yeast cells with a normal cell wall. Firstly, it is possible that some of the intracellular yeast compartments have all the necessary host factors that are required for successful RNA packaging, budding and maturation of infectious retroviral vector particles. Secondly, it might be possible to improve intracellular viral vector production by artificially targeting viral cores to bud at specific intracellular vesicular structures using appropriate targeting or retention signals. A suitable envelope protein, conferring infectivity and specific cellular tropism to the vector particles, can be expressed in yeast or, alternatively, 'bald' viral particles without envelope protein can be produced in yeast and later complexed with a desired envelope protein in vitro. Retroviral budding on yeast intracellular membranes can rely on the same host factors that are used by yeast retrotransposons driving intracellular formation of non-infectious virus-like particles. It is likely that optimal vector packaging system can be found as a result of the dedicated screening of the various retroviral vectors against an array of yeast species. The central implication of the hypothesis is that budding of retroviral vector particles inside yeast cells, with no need for obtaining and maintaining yeast spheroplasts or protoplasts, can be an efficient and economical method of mass production of these valuable gene therapy vectors.


Asunto(s)
Vectores Genéticos , Retroviridae/genética , Saccharomyces cerevisiae/genética , Ensamble de Virus/fisiología , Biotecnología , Modelos Genéticos , Retroviridae/fisiología
9.
J Biochem Biophys Methods ; 64(2): 142-6, 2005 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16054701

RESUMEN

When a DNA cloning experiment fails, it is often difficult to distinguish between an inadequate cloning protocol and instability of the new recombinant plasmid. The identification of plasmid instability is particularly challenging when the instability is fatal and no DNA of the expected construct can be isolated. We have effectively addressed this problem by employment of duplex PCR (insert-insert, vector-insert) to analyse both the ligation mixture and the resultant bacterial transformants. Using this approach we found a fatal maintenance instability of one of the plasmids generated during subcloning of the cDNA for human LDLR in Escherichia coli STBL2. The described duplex PCR screening method allows monitoring of the fate of nascent recombinant plasmid from ligation, through the initial bacterial colony and the subsequent overnight culture.


Asunto(s)
Técnicas Genéticas , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Clonación Molecular , ADN/metabolismo , Fragmentación del ADN , ADN Bacteriano/genética , ADN Complementario/metabolismo , Escherichia coli/metabolismo , Humanos , Operón Lac , Modelos Genéticos , Recombinación Genética , Temperatura , Factores de Tiempo
10.
Med Hypotheses ; 85(5): 686-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26319641

RESUMEN

Gene delivery to human somatic cells is a well-established therapeutic strategy to treat a variety of diseases. In addition, gene transfer to human cells is required to generate human induced pluripotent cells and also to eliminate tumorigenic undifferentiated cells in many types of stem-cell derived transplantation material. The expression of transgenes in these medical technologies is often required only in some of the recipient cells and only in specific limited time-windows, with inappropriately located or untimely expressed transgenes presenting a risk of undesired collateral effects. Unfortunately, current gene transfer procedures commonly result in a number of cells in the patient's body containing fragments of transferred genetic material which are either not therapeutically necessary at all, are no longer necessary or are necessary but in some other cells. Such transgenic material in the patient, created as a by-product of the chosen therapeutic procedure, constitutes, in fact, 'genetic litter', that is, persisting potentially-hazardous foreign genetic material which is neither required therapeutically nor explicitly chosen by an informed and free-willing person as an artificial body element. Wider use and more frequent administration of gene and cell therapy in the future are likely to give greater prominence to the issue of misdelivered genetic medicines and of their unwanted remainders accumulating in human bodies. Thus, novel DNA templates, which, on the one hand, are capable of providing transgene expression over broad time-windows, and, on the other hand, do not leave unwanted permanent 'genetic traces', are required. I propose that the problem of 'genetic litter' in patients' bodies can be addressed through the employment of a new type of gene vectors delivering DNA-based transgenic modules with pre-programmed self-destruction. Such vectors could deliver therapeutic DNA cargo and then execute self-liquidation through pre-scheduled activation of co-delivered genome editing tools, such as CRISPR/Cas9 nucleases, specific for the DNA to be eliminated. In this model, all unnecessary transgenic DNA is edited away precisely at a desired time point. Activity of the gene correction apparatus for the specific and effective destruction of transgenic DNA could be turned on by well-timed external signals or could be triggered through intracellular sensors of particular epigenetic signatures. It is expected that the employment of the proposed DNA-based gene vectors equipped with a transgene self-destruct mechanism can extend the safe and ethical application of gene and cell therapy to a broader range of curative and lifestyle-choice medical treatments, e.g., full body prophylactic gene therapy of cancer.


Asunto(s)
ADN/genética , Transgenes , Vectores Genéticos , Humanos , Modelos Teóricos
11.
Artif Intell Med ; 63(1): 1-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25547266

RESUMEN

BACKGROUND: Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. HYPOTHESIS: I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo are then attracted to and internalized into the intended target cells via the expressed cognate strongly binding extra-cellular receptor, causing escalation of gene transfer into these cells and increasing the copy number of the therapeutic gene expression modules. Such self-focusing swarms of gene vectors can be either homogeneous, with 'scout' and 'therapeutic' members of the swarm being structurally identical, or, alternatively, heterogeneous (split), with 'scout' and 'therapeutic' members of the swarm being structurally specialized. CONCLUSIONS: It is hoped that the proposed self-focusing cell-targeted gene vector swarms with receptor-mediated intra-swarm signalling could be particularly effective in 'top-up' gene delivery scenarios, achieving high-level and sustained expression of therapeutic transgenes that are prone to shut-down through degradation and silencing. Crucially, in contrast to low-precision 'general location' vector guidance by diffusible chemo-attractants, ear-marking non-diffusible receptors can provide high-accuracy targeting of therapeutic vector particles to the specific cell, which has undergone a 'successful cell-specific hit' by a 'scout' vector particle. Opportunities for cell targeting could be expanded, since in the proposed model of self-focusing it could be possible to probe a broad selection of intra-cellular determinants of cell-specificity and not just to rely exclusively on extra-cellular markers of cell-specificity. By employing such self-focusing gene vectors for the improvement of cell-targeted delivery of therapeutic genes, e.g., in cancer therapy or gene addition therapy of recessive genetic diseases, it could be possible to broaden a leeway for the reduction of the vector load and, consequently, to minimize undesired vector cytotoxicity, immune reactions, and the risk of inadvertent genetic modification of germline cells in genetic treatment in vivo.


Asunto(s)
Marcación de Gen/métodos , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos , Nanomedicina/métodos , Transducción de Señal/genética , Transgenes , Animales , Regulación de la Expresión Génica , Marcación de Gen/efectos adversos , Técnicas de Transferencia de Gen/efectos adversos , Terapia Genética/efectos adversos , Humanos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Med Hypotheses ; 83(2): 211-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24854575

RESUMEN

Tightly controlled spatial localisation of therapeutic gene delivery is essential to maximize the benefits of somatic gene therapy in vivo and to reduce its undesired effects on the 'bystander' cell populations, most importantly germline cells. Indeed, complete ethical assurance of somatic gene therapy can only be achieved with ultra-targeted gene delivery, which excludes the risk of inadvertent germline gene transfer. Thus, it is desired to supplement existing strategies of physical focusing and biological (cell-specific) targeting of gene delivery with an additional principle for the rigid control over spread of gene transfer within the body. In this paper I advance the concept of 'combinatorial' targeting of therapeutic gene transfer in vivo. I hypothesize that it is possible to engineer complex gene delivery vector systems consisting of several components, each one of them capable of independent spread within the human body but incapable of independent facilitation of gene transfer. As the gene delivery augmented by such split vector systems would be reliant on the simultaneous availability of all the vector system components at a predetermined body site, it is envisaged that higher order reaction kinetics required for the assembly of the functional gene transfer configuration would sharpen spatial localisation of gene transfer via curtailing the blurring effect of the vector spread within the body. A particular implementation of such split vector system could be obtained through supplementing a viral therapeutic gene vector with a separate auxiliary vector carrying a non-integrative and non-replicative form of a gene (e.g., mRNA) coding for a cellular receptor of the therapeutic vector component. Gene-transfer-enabling components of the vector system, which would be delivered separately from the vector component loaded with the therapeutic gene cargo, could also be cell-membrane-insertion-proficient receptors, elements of artificial transmembrane channels capable of nucleic acid transfer or, perhaps, factors modifying existing cellular transmembrane channels (e.g., gap-junctional hemichannels) to serve as conduits for gene entry. In general, there are four possibilities for gene transfer in vivo using a split vector system: (1) simultaneous delivery of a mixture of the vector components to the same body site; (2) sequential delivery of the vector components to the same body site; (3) simultaneous delivery of the vector components to separate body sites; (4) sequential delivery of the vector components to separate body sites. It is hoped that, once experimentally confirmed, the combinatorial principle for tight control over localisation of gene transfer could be the critical element in attaining complete assurance of gene non-delivery to germline cells in somatic gene therapy in vivo.


Asunto(s)
Marcación de Gen/métodos , Técnicas de Transferencia de Gen , Terapia Genética/ética , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Modelos Genéticos
14.
3 Biotech ; 3(1): 61-70, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28324350

RESUMEN

Large-scale production of plasmid DNA to prepare therapeutic gene vectors or DNA-based vaccines requires a suitable bacterial host, which can stably maintain the plasmid DNA during industrial cultivation. Plasmid loss during bacterial cell divisions and structural changes in the plasmid DNA can dramatically reduce the yield of the desired recombinant plasmid DNA. While generating an HIV-based gene vector containing a bicistronic expression cassette 5'-Olig2cDNA-IRES-dsRed2-3', we encountered plasmid DNA instability, which occurred in homologous recombination deficient recA1 Escherichia coli strain Stbl2 specifically during large-scale bacterial cultivation. Unexpectedly, the new recombinant plasmid was structurally changed or completely lost in 0.5 L liquid cultures but not in the preceding 5 mL cultures. Neither the employment of an array of alternative recA1 E. coli plasmid hosts, nor the lowering of the culture incubation temperature prevented the instability. However, after the introduction of this instability-prone plasmid into the recA13E. coli strain Stbl3, the transformed bacteria grew without being overrun by plasmid-free cells, reduction in the plasmid DNA yield or structural changes in plasmid DNA. Thus, E. coli strain Stbl3 conferred structural and maintenance stability to the otherwise instability-prone lentivirus-based recombinant plasmid, suggesting that this strain can be used for the faithful maintenance of similar stability-compromised plasmids in large-scale bacterial cultivations. In contrast to Stbl2, which is derived wholly from the wild type isolate E. coli K12, E. coli Stbl3 is a hybrid strain of mixed E. coli K12 and E. coli B parentage. Therefore, we speculate that genetic determinants for the benevolent properties of E. coli Stbl3 for safe plasmid propagation originate from its E. coli B ancestor.

15.
J Mol Med (Berl) ; 91(7): 825-37, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23756766

RESUMEN

Choroideremia (CHM) is an X-linked retinal degeneration of photoreceptors, the retinal pigment epithelium (RPE) and choroid caused by loss of function mutations in the CHM/REP1 gene that encodes Rab escort protein 1. As a slowly progressing monogenic retinal degeneration with a clearly identifiable phenotype and a reliable diagnosis, CHM is an ideal candidate for gene therapy. We developed a serotype 2 adeno-associated viral vector AAV2/2-CBA-REP1, which expresses REP1 under control of CMV-enhanced chicken ß-actin promoter (CBA) augmented by a Woodchuck hepatitis virus post-transcriptional regulatory element. We show that the AAV2/2-CBA-REP1 vector provides strong and functional transgene expression in the D17 dog osteosarcoma cell line, CHM patient fibroblasts and CHM mouse RPE cells in vitro and in vivo. The ability to transduce human photoreceptors highly effectively with this expression cassette was confirmed in AAV2/2-CBA-GFP transduced human retinal explants ex vivo. Electroretinogram (ERG) analysis of AAV2/2-CBA-REP1 and AAV2/2-CBA-GFP-injected wild-type mouse eyes did not show toxic effects resulting from REP1 overexpression. Subretinal injections of AAV2/2-CBA-REP1 into CHM mouse retinas led to a significant increase in a- and b-wave of ERG responses in comparison to sham-injected eyes confirming that AAV2/2-CBA-REP1 is a promising vector suitable for choroideremia gene therapy in human clinical trials.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Coroideremia/genética , Dependovirus/genética , Técnicas de Transferencia de Gen , Retina/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , ADN Complementario/genética , Perros , Femenino , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Transgénicos
16.
Med Hypotheses ; 78(5): 632-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22356834

RESUMEN

The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II topoisomerases. The technology for such self-entanglement can be an avenue for the improvement of gene delivery with high-molecular-weight naked DNA using therapeutically important methods associated with considerable shear stress. Priority applications include in vivo muscle electroporation and sonoporation for Duchenne muscular dystrophy patients, aerosol inhalation to reach the target lung cells of cystic fibrosis patients and bio-ballistic delivery to skin melanomas with the vector DNA adsorbed on gold or tungsten projectiles.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/uso terapéutico , Sitios de Unión/genética , ADN Forma B/química , ADN Forma B/genética , Terapia Genética/métodos , Vectores Genéticos/química , Vectores Genéticos/genética , Humanos , Modelos Genéticos , Peso Molecular , Conformación de Ácido Nucleico
17.
Curr Gene Ther ; 11(6): 466-78, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22023476

RESUMEN

Plasmids are circular or linear DNA molecules propagated extra-chromosomally in bacteria. Evolution shaped plasmids are inherently mosaic structures with individual functional units represented by distinct segments in the plasmid genome. The patchwork of plasmid genetic modules is a convenient template and a model for the generation of artificial plasmids used as vehicles for gene delivery into human cells. Plasmid gene vectors are an important tool in gene therapy and in basic biomedical research, where these vectors offer efficient transgene expression in many settings in vitro and in vivo. Plasmid vectors can be attached to nuclear directing ligands or transferred by electroporation as naked DNA to deliver the payload genes to the nuclei of the target cells. Transgene expression silencing by plasmid sequences of bacterial origin and immune stimulation by bacterial unmethylated CpG motifs can be avoided by the generation of plasmid-based minimized DNA vectors, such as minicircles. Systems of efficient site-specific integration into human chromosomes and stable episomal maintenance in human cells are being developed for further reduction of the chances for transgene silencing. The successful generation of plasmid vectors is governed by a number of vector design rules, some of which are common to all gene vectors, while others are specific to plasmid vectors. This review is focused both on the guiding principles and on the technical know-how of plasmid gene vector design.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos , Plásmidos , Bacterias/genética , Cromosomas Humanos , Islas de CpG , Electroporación , Expresión Génica , Marcadores Genéticos , Humanos , Transgenes
18.
J Mol Med (Berl) ; 89(5): 515-29, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21301798

RESUMEN

We have previously described the development of a scaffold/matrix attachment region (S/MAR) episomal vector system for in vivo application and demonstrated its utility to sustain transgene expression in the mouse liver for at least 6 months following a single administration. Subsequently, we observed that transgene expression is sustained for the lifetime of the animal. The level of expression, however, does drop appreciably over time. We hypothesised that by eliminating the bacterial components in our vectors, we could improve their performance since bacterial sequences have been shown to be responsible for the immunotoxicity of the vector and the silencing of its expression when applied in vivo. We describe here the development of a minimally sized S/MAR vector, which is devoid of extraneous bacterial sequences. This minicircle vector comprises an expression cassette and an S/MAR moiety, providing higher and more sustained transgene expression for several months in the absence of selection, both in vitro and in vivo. In contrast to the expression of our original S/MAR plasmid vector, the novel S/MAR minicircle vectors mediate increased transgene expression, which becomes sustained at about twice the levels observed immediately after administration. These promising results demonstrate the utility of minimally sized S/MAR vectors for persistent, atoxic gene expression.


Asunto(s)
Vectores Genéticos/genética , Hígado/metabolismo , Transgenes/genética , Animales , Southern Blotting , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Reacción en Cadena de la Polimerasa
19.
Med Hypotheses ; 74(4): 702-4, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19914006

RESUMEN

Minimized derivatives of bacterial plasmids with removed bacterial backbones are promising vectors for the efficient delivery and for the long-term expression of therapeutic genes. The absence of the bacterial plasmid backbone, a known inducer of innate immune response and a known silencer of transgene expression, provides a partial explanation for the high efficiency of gene transfer using minimized DNA vectors. Supercoiled minicircle DNA is a type of minimized DNA vector obtained via intra-plasmid recombination in bacteria. Minicircle vectors seem to get an additional advantage from their physical compactness, which reduces DNA damage due to the mechanical stress during gene delivery. An independent topological means for DNA compression is knotting, with some knotted DNA isoforms offering superior compactness. I propose that, firstly, knotted DNA can be a suitable compact DNA form for the efficient transfection of a range of human cells with therapeutic genes, and, secondly, that knotted minimized DNA vectors without bacterial backbones ("miniknot" vectors) can surpass supercoiled minicircle DNA vectors in the efficiency of therapeutic gene delivery. Crucially, while the introduction of a single nick to a supercoiled DNA molecule leads to the loss of the compact supercoiled status, the introduction of nicks to knotted DNA does not change knotting. Tight miniknot vectors can be readily produced by the direct action of highly concentrated type II DNA topoisomerase on minicircle DNA or, alternatively, by annealing of the 19-base cohesive ends of the minimized vectors confined within the capsids of Escherichia coli bacteriophage P2 or its satellite bacteriophage P4. After reaching the nucleoplasm of the target cell, the knotted DNA is expected to be unknotted through type II topoisomerase activity and thus to become available for transcription, chromosomal integration or episomal maintenance. The hypothesis can be tested by comparing the gene transfer efficiency achieved with the proposed miniknot vectors, the minicircle vectors described previously, knotted plasmid vectors and standard plasmid vectors. Tightly-wound miniknots can be particularly useful in the gene administration procedures involving considerable forces acting on vector DNA: aerosol inhalation, jet-injection, electroporation, particle bombardment and ultrasound DNA transfer.


Asunto(s)
ADN Superhelicoidal/genética , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos , Plásmidos , Bacterias/genética , Bacterias/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN/genética , Electroporación , Humanos , Recombinación Genética , Riesgo , Transfección , Transgenes
20.
J Gene Med ; 8(6): 754-63, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16532508

RESUMEN

BACKGROUND: To develop more efficient non-viral vectors, we have previously described a novel approach to attach a nuclear localisation signal (NLS) to plasmid DNA, by generating a fusion protein between the tetracycline repressor protein TetR and an SV40 NLS peptide (TetR-NLS). The high affinity of TetR for the DNA sequence tetO is used to bind the NLS to DNA. We have now investigated the ability of this system displaying the SV40 NLS or HIV-1 TAT peptide to enhance nuclear import of a minimised DNA construct more suitable for in vivo gene delivery: a minicircle. METHODS: We have produced a new LacZ minicircle compatible with the TetR system. After transfection of the minicircle in combination with TetR-NLS or TetR-TAT using different transfection agents, we first measured beta-galactosidase activity in vitro. We then used a special delivery technique, in which DOTAP/cholesterol liposomes and DNA/protein complexes are sequentially injected intravenously, to evaluate the activity of this system in vivo. RESULTS: In vitro results showed a 30-fold increase in transfection efficiency of the nuclear-targeted minicircle compared to normal plasmid lipofection. Results on cell cycle arrested cells seem to indicate a different mechanism between the TetR-NLS and TetR-TAT. Finally, we demonstrate a more than 6-fold increase in beta-galactosidase expression in the mouse lung using the minicircle and the TetR-TAT protein. This increase is specific for the peptide sequence and is not observed with the control protein TetR. CONCLUSIONS: Our results indicate that the combination of a minicircle DNA construct with a TetR nuclear-targeting system is able to potentiate gene expression of non-viral vectors.


Asunto(s)
Núcleo Celular/metabolismo , ADN Circular/genética , Vectores Genéticos , Transfección/métodos , Animales , Femenino , Expresión Génica , Ratones , Células 3T3 NIH , Tetraciclina/metabolismo , Transgenes , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA