Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 35(14): i61-i70, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31510642

RESUMEN

MOTIVATION: The recently developed barcoding-based synthetic long read (SLR) technologies have already found many applications in genome assembly and analysis. However, although some new barcoding protocols are emerging and the range of SLR applications is being expanded, the existing SLR assemblers are optimized for a narrow range of parameters and are not easily extendable to new barcoding technologies and new applications such as metagenomics or hybrid assembly. RESULTS: We describe the algorithmic challenge of the SLR assembly and present a cloudSPAdes algorithm for SLR assembly that is based on analyzing the de Bruijn graph of SLRs. We benchmarked cloudSPAdes across various barcoding technologies/applications and demonstrated that it improves on the state-of-the-art SLR assemblers in accuracy and speed. AVAILABILITY AND IMPLEMENTATION: Source code and installation manual for cloudSPAdes are available at https://github.com/ablab/spades/releases/tag/cloudspades-paper. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Nube Computacional , Análisis de Secuencia de ADN , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica
2.
STAR Protoc ; 4(3): 102417, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37405923

RESUMEN

The analysis of metagenomic data obtained via high-throughput DNA sequencing is primarily carried out by a dedicated binning process involving clustering contigs, presumably belonging to the same species. Here, we present a protocol for improving the quality of binning using BinSPreader. We describe steps for typical metagenome assembly and binning workflow. We then detail binning refining, its variants, output, and possible caveats. This protocol optimizes the process of reconstructing more complete genomes of microorganisms that make up the metagenome. For complete details on the use and execution of this protocol, please refer to Tolstoganov et al.1.


Asunto(s)
Metagenoma , Metagenómica , Metagenoma/genética , Análisis de Secuencia de ADN/métodos , Metagenómica/métodos , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento
3.
iScience ; 25(8): 104770, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992057

RESUMEN

Despite the recent advances in high-throughput sequencing, metagenome analysis of microbial populations still remains a challenge. In particular, the metagenome-assembled genomes (MAGs) are often fragmented due to interspecies repeats, uneven coverage, and varying strain abundance. MAGs are constructed via a binning process that uses features of input data in order to cluster long contigs presumably belonging to the same species. In this work, we present BinSPreader-a binning refiner tool that exploits the assembly graph topology and other connectivity information to refine binning, correct binning errors, and propagate binning to shorter contigs. We show that BinSPreader could increase the completeness of the bins without sacrificing the purity and could predict contigs belonging to several MAGs. BinSPreader is effective in binning shorter contigs that often contain important conservative sequences that might be of great interest to researchers.

4.
Nat Biotechnol ; 40(5): 711-719, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34980911

RESUMEN

Microbial communities might include distinct lineages of closely related organisms that complicate metagenomic assembly and prevent the generation of complete metagenome-assembled genomes (MAGs). Here we show that deep sequencing using long (HiFi) reads combined with Hi-C binning can address this challenge even for complex microbial communities. Using existing methods, we sequenced the sheep fecal metagenome and identified 428 MAGs with more than 90% completeness, including 44 MAGs in single circular contigs. To resolve closely related strains (lineages), we developed MAGPhase, which separates lineages of related organisms by discriminating variant haplotypes across hundreds of kilobases of genomic sequence. MAGPhase identified 220 lineage-resolved MAGs in our dataset. The ability to resolve closely related microbes in complex microbial communities improves the identification of biosynthetic gene clusters and the precision of assigning mobile genetic elements to host genomes. We identified 1,400 complete and 350 partial biosynthetic gene clusters, most of which are novel, as well as 424 (298) potential host-viral (host-plasmid) associations using Hi-C data.


Asunto(s)
Metagenoma , Microbiota , Animales , Heces , Metagenoma/genética , Metagenómica , Microbiota/genética , Análisis de Secuencia de ADN , Ovinos
5.
Front Microbiol ; 12: 770323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185811

RESUMEN

Gut microbiome in critically ill patients shows profound dysbiosis. The most vulnerable is the subgroup of chronically critically ill (CCI) patients - those suffering from long-term dependence on support systems in intensive care units. It is important to investigate their microbiome as a potential reservoir of opportunistic taxa causing co-infections and a morbidity factor. We explored dynamics of microbiome composition in the CCI patients by combining "shotgun" metagenomics with chromosome conformation capture (Hi-C). Stool samples were collected at 2 time points from 2 patients with severe brain injury with different outcomes within a 1-2-week interval. The metagenome-assembled genomes (MAGs) were reconstructed based on the Hi-C data using a novel hicSPAdes method (along with the bin3c method for comparison), as well as independently of the Hi-C using MetaBAT2. The resistomes of the samples were derived using a novel assembly graph-based approach. Links of bacteria to antibiotic resistance genes, plasmids and viruses were analyzed using Hi-C-based networks. The gut community structure was enriched in opportunistic microorganisms. The binning using hicSPAdes was superior to the conventional WGS-based binning as well as to the bin3c in terms of the number, completeness and contamination of the reconstructed MAGs. Using Klebsiella pneumoniae as an example, we showed how chromosome conformation capture can aid comparative genomic analysis of clinically important pathogens. Diverse associations of resistome with antimicrobial therapy from the level of assembly graphs to gene content were discovered. Analysis of Hi-C networks suggested multiple "host-plasmid" and "host-phage" links. Hi-C metagenomics is a promising technique for investigating clinical microbiome samples. It provides a community composition profile with increased details on bacterial gene content and mobile genetic elements compared to conventional metagenomics. The ability of Hi-C binning to encompass the MAG's plasmid content facilitates metagenomic evaluation of virulence and drug resistance dynamics in clinically relevant opportunistic pathogens. These findings will help to identify the targets for developing cost-effective and rapid tests for assessing microbiome-related health risks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA