Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Phys Chem A ; 127(46): 9661-9671, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37962297

RESUMEN

Merocyanines, as prototypes of highly polar π-conjugated molecules, have been intensively investigated for their self-assembly and optoelectronic properties, both experimentally and theoretically. However, an accurate description of their structural and electronic properties remains challenging for quantum-chemical methods. We assessed several theoretical approaches, TD-DFT, GW-BSE, STEOM-DLPNO-CCSD, and CASSCF/NEVPT2-FIC for their reliability in reproducing optoelectronic properties of a series of donor/acceptor (D/A) merocyanines, focusing on the first excitation energy. Additionally, we tested an all-electron perturbative method based on time-dependent coupled-perturbed density functional theory, denoted as TDCP-DFT. Particular focus was set on direct and indirect solvent effects, which affect excited-state energies by electrostatic interaction and molecular geometry. The molecular configuration space was sampled at the semiempirical tight-binding level. Our results corroborate previous investigations, showing that the S0 - S1 excitation energy strongly depends on the merocyanine molecular structure and the dielectric constant of the solvent. We found significant effects of the polar solution environment on the geometry of the merocyanines, which strongly affect the calculated excitation energies. Taking these effects into account, the best agreement between calculated and measured excitation energies was obtained with TDCP-DFT and GW-BSE. We also calculated excitation energies of molecular crystals at the TDCP-DFT level and compared the results to the corresponding monomers.

2.
J Am Soc Nephrol ; 32(7): 1697-1712, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33911000

RESUMEN

BACKGROUND: Podocytes are critical to maintaining the glomerular filtration barrier, and mutations in nephrotic syndrome genes are known to affect podocyte calcium signaling. However, the role of calcium signaling during podocyte development remains unknown. METHODS: We undertook live imaging of calcium signaling in developing podocytes, using zebrafish larvae and human kidney organoids. To evaluate calcium signaling during development and in response to channel blockers and genetic defects, the calcium biosensor GCaMP6s was expressed in zebrafish podocytes. We used electron microscopy to evaluate filtration barrier formation in zebrafish, and Fluo-4 to detect calcium signals in differentiating podocytes in human kidney organoids. RESULTS: Immature zebrafish podocytes (2.5 days postfertilization) generated calcium transients that correlated with interactions with forming glomerular capillaries. Calcium transients persisted until 4 days postfertilization, and were absent after glomerular barrier formation was complete. We detected similar calcium transients in maturing human organoid glomeruli, suggesting a conserved mechanism. In both models, inhibitors of SERCA or IP3 receptor calcium-release channels blocked calcium transients in podocytes, whereas lanthanum was ineffective, indicating the calcium source is from intracellular podocyte endoplasmic-reticulum stores. Calcium transients were not affected by blocking heartbeat or by blocking development of endothelium or endoderm, and they persisted in isolated glomeruli, suggesting podocyte-autonomous calcium release. Inhibition of expression of phospholipase C-γ1, but not nephrin or phospholipase C-ε1, led to significantly decreased calcium activity. Finally, blocking calcium release affected glomerular shape and podocyte foot process formation, supporting the critical role of calcium signaling in glomerular morphogenesis. CONCLUSIONS: These findings establish podocyte cell-autonomous calcium signaling as a prominent and evolutionarily conserved feature of podocyte differentiation and demonstrate its requirement for podocyte foot process formation.

3.
Molecules ; 27(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35335195

RESUMEN

Plumbagin, a hydroxy-1,4-naphthoquinone, confers neuroprotection via antioxidant and anti-inflammatory properties. The present study aimed to assess the effect of plumbagin on behavioral and memory deficits induced by intrahippocampal administration of Quinolinic acid (QA) in male Wistar rats and reveal the associated mechanisms. QA (300 nM/4 µL in Normal saline) was administered i.c.v. in the hippocampus. QA administration caused depression-like behavior (forced swim test and tail suspension tests), anxiety-like behavior (open field test and elevated plus maze), and elevated anhedonia behavior (sucrose preference test). Furthermore, oxidative-nitrosative stress (increased nitrite content and lipid peroxidation with reduction of GSH), inflammation (increased IL-1ß), cholinergic dysfunction, and mitochondrial complex (I, II, and IV) dysfunction were observed in the hippocampus region of QA-treated rats as compared to normal controls. Plumbagin (10 and 20 mg/kg; p.o.) treatment for 21 days significantly ameliorated behavioral and memory deficits in QA-administered rats. Moreover, plumbagin treatment restored the GSH level and reduced the MDA and nitrite level in the hippocampus. Furthermore, QA-induced cholinergic dysfunction and mitochondrial impairment were found to be ameliorated by plumbagin treatment. In conclusion, our results suggested that plumbagin offers a neuroprotective potential that could serve as a promising pharmacological approach to mitigate neurobehavioral changes associated with neurodegeneration.


Asunto(s)
Depresión , Ácido Quinolínico , Animales , Conducta Animal , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Naftoquinonas , Estrés Oxidativo , Ratas , Ratas Wistar
4.
Genome Res ; 25(1): 57-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25273069

RESUMEN

Genome-wide association studies (GWAS) identify regions of the genome correlated with disease risk but are restricted in their ability to identify the underlying causative mechanism(s). Thus, GWAS are useful "roadmaps" that require functional analysis to establish the genetic and mechanistic structure of a particular locus. Unfortunately, direct functional testing in humans is limited, demonstrating the need for complementary approaches. Here we used an integrated approach combining zebrafish, rat, and human data to interrogate the function of an established GWAS locus (SHROOM3) lacking prior functional support for chronic kidney disease (CKD). Congenic mapping and sequence analysis in rats suggested Shroom3 was a strong positional candidate gene. Transferring a 6.1-Mb region containing the wild-type Shroom3 gene significantly improved the kidney glomerular function in FHH (fawn-hooded hypertensive) rat. The wild-type Shroom3 allele, but not the FHH Shroom3 allele, rescued glomerular defects induced by knockdown of endogenous shroom3 in zebrafish, suggesting that the FHH Shroom3 allele is defective and likely contributes to renal injury in the FHH rat. We also show for the first time that variants disrupting the actin-binding domain of SHROOM3 may cause podocyte effacement and impairment of the glomerular filtration barrier.


Asunto(s)
Barrera de Filtración Glomerular/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Pez Cebra/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Animales Congénicos , Animales Modificados Genéticamente , Clonación Molecular , Exones , Femenino , Sitios Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Renales/genética , Masculino , Proteínas de Microfilamentos/genética , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Plásmidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Análisis de Secuencia de ADN , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Clin Nephrol ; 86 (2016)(13): 114-118, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27509583

RESUMEN

BACKGROUND: Risk variant Apolipoprotein L1 (G1/G2) are strongly associated with a spectrum of kidney disease in people of recent African descent. The mechanism of ApoL1 nephropathy is unknown. Podocytes and/or endothelial cells are the presumed target kidney cells. Given the close homology in structure and function of zebrafish (ZF) pronephros and human nephron, we studied the effect of podocyte-specific or endothelium-specific expression of ApoL1 (G0, G1, or G2) on the structure and function of ZF pronephros. METHODS: Wild type (G0) or risk variant ApoL1 (G1/G2) were expressed in podocyte-specific or endothelium-specific under podocin/Flk promoters, respectively, using Gal4-UAS system. Structural pronephric changes were studied with light and electron microscopy (EM). Proteinuria was assayed by measuring renal excretion of GFP-vitamin D binding protein. Puromycin aminonucleoside (PAN) was used as inducer of podocyte injury. RESULTS: Endothelial-specific transgenic expression of G1/G2 is associated with endothelial injury indicated by endothelial cell swelling, segmental early double contours, and loss of endothelium fenestrae. Podocyte specific expression of G1 is associated with segmental podocyte foot process effacement and irregularities relative to G0. Despite the histological changes, the expression of G1/G2 alone in podocyte or endothelium compartment is not associated with edema, proteinuria, or gross whole fish phenotype. Moreover, PAN produced equal pericardial edema in all transgenic fish as well as nontransgenic controls. CONCLUSIONS: Transgenic expression human ApoL1 (G1/G2) is associated with histologic abnormalities in ZF glomeruli but is insufficient to cause quantifiable renal dysfunction. This finding supports the necessity of a "second hit" in the pathogenesis/progression of ApoL1-associated nephropathy.


Asunto(s)
Apolipoproteínas/genética , Enfermedades Renales/genética , Lipoproteínas HDL/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Variación Genética/genética , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Glomérulos Renales/metabolismo , Proteínas de la Membrana/genética , Podocitos/metabolismo , Podocitos/patología , Regiones Promotoras Genéticas/genética , Pronefro/metabolismo , Pronefro/patología , Proteinuria/orina , Factores de Transcripción/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Proteína de Unión a Vitamina D/orina , Pez Cebra
6.
J Am Soc Nephrol ; 25(11): 2539-45, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24722440

RESUMEN

Odd-skipped related 1 (Osr1) encodes a zinc finger transcription factor required for kidney development. Osr1 deficiency in mice results in metanephric kidney agenesis, whereas knockdown or mutation studies in zebrafish revealed that pronephric nephrons require osr1 for proximal tubule and podocyte development. osr1-deficient pronephric podocyte progenitors express the Wilms' tumor suppressor wt1a but do not undergo glomerular morphogenesis or express the foot process junctional markers nephrin and podocin. The function of osr1 in podocyte differentiation remains unclear, however. Here, we found by double fluorescence in situ hybridization that podocyte progenitors coexpress osr1 and wt1a. Knockdown of wt1a disrupted podocyte differentiation and prevented expression of osr1. Blocking retinoic acid signaling, which regulates wt1a, also prevented osr1 expression in podocyte progenitors. Furthermore, unlike the osr1-deficient proximal tubule phenotype, which can be rescued by manipulation of endoderm development, podocyte differentiation was not affected by altered endoderm development, as assessed by nephrin and podocin expression in double osr1/sox32-deficient embryos. These results suggest a different, possibly cell- autonomous requirement for osr1 in podocyte differentiation downstream of wt1a. Indeed, osr1-deficient embryos did not exhibit podocyte progenitor expression of the transcription factor lhx1a, and forced expression of activated forms of the lhx1a gene product rescued nephrin expression in osr1-deficient podocytes. Our results place osr1 in a framework of transcriptional regulators that control the expression of podocin and nephrin and thereby mediate podocyte differentiation.


Asunto(s)
Podocitos/fisiología , Factores de Transcripción/fisiología , Proteínas WT1/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Diferenciación Celular/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Túbulos Renales/citología , Túbulos Renales/embriología , Túbulos Renales/fisiología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/fisiología , Masculino , Podocitos/citología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Transcripción Genética/fisiología , Proteínas WT1/genética , Pez Cebra , Proteínas de Pez Cebra/genética
7.
3 Biotech ; 14(6): 156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766321

RESUMEN

In the present investigation one compound, 2,6-dimethoxy benzoquinone (FJL-1), was isolated from the dichloromethane (DCM) fraction of the organic leaf extract of Flacourtia Jangomas for the first time. The compound structure was elucidated using extensive spectral analysis, including 1H, and 13C NMR. Furthermore, the DPPH and ABTS methods were used to evaluate the antioxidant activity of the organic extract, its fractions, and the isolated compound FJL-1. Antioxidant activity of the petroleum, ether, DCM, and methanol fractions of the organic extract and the isolated compound of F. Jangomas revealed moderate to strong radical scavenging ability. Additionally, the antimicrobial activity of FJL-1 against Staphylococcus aureus (MTCC 737 and MTCC 96 strains) was observed in an inhibition zone size of 21.6 ± 0.6 to 21.7 ± 0.58 mm showing potential inhibitory activity. The isolated compound FJL-1 shows excellent binding with the 2W9S proteins in terms of docking score compared with the drug Trimethoprim, which also exhibited similar types of interaction and potency against S. aureus. The leaves of F. jangomas can be considered a great source for the identification of numerous important phytoconstituents with potential uses in nutrition, aromatherapy, and the pharmaceutical sector. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04002-w.

8.
ACS Appl Bio Mater ; 7(4): 2036-2053, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38525971

RESUMEN

Cancer is one of the major causes of death worldwide, even the second foremost cause related to non-communicable diseases. Cancer cells typically possess several cellular and biological processes including, persistence, propagation, differentiation, cellular death, and expression of cellular-type specific functions. The molecular picture of carcinogenesis and progression is unwinding, and it appears to be a tangled combination of processes occurring within and between cancer cells and their surrounding tissue matrix. Polyphenols are plant secondary metabolites abundant in fruits, vegetables, cereals, and other natural plant sources. Natural polyphenols have implicated potential anticancer activity by various mechanisms involved in their antitumor action, including modulation of signaling pathways majorly related to cellular proliferation, differentiation, relocation, angiogenesis, metastatic processes, and cell death. The applications of polyphenols have been limited due to the hydrophobic nature and lower oral bioavailability that could be possibly overcome through encapsulating them into nanocarrier-mediated delivery systems, leading to improved anticancer activity. Nanoemulsions (NEs) possess diverse feasible properties, including greater surface area, modifiable surficial charge, higher half-life, site-specific targeting, and formulation imaging capability necessary to create a practical therapeutic impact, and have drawn increased attention in cancer therapy research. This review has summarized and discussed the basic concepts, classification, delivery approaches, and anticancer mechanism of various polyphenols and polyphenols-encapsulated nanoemulsions with improved cancer therapy.


Asunto(s)
Neoplasias , Polifenoles , Humanos , Polifenoles/farmacología , Polifenoles/química , Neoplasias/metabolismo , Antioxidantes/química , Transducción de Señal
9.
CNS Neurol Disord Drug Targets ; 22(1): 125-136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35232368

RESUMEN

BACKGROUND: A substantial amount of evidence indicates that long-term arsenic exposure leads to various types of pathological complications, especially cognitive dysfunction. OBJECTIVE: The present study was designed to assess the neuroprotective potential of edaravone (a potent free radical scavenger) against arsenic-induced neurotoxicity in Wistar rats. METHODS: Adult male Wistar rats were randomly divided into five groups. Arsenic (20 mg/kg/day; p.o.) and Edaravone (5 and 10 mg/kg/day; i.p.) were administered in different experimental groups for 28 days. RESULTS: The results of various behavioral test paradigms revealed that arsenic caused significant learning and memory deficits, along with anxiety-like behavior. In biochemical analysis, we found marked elevations of oxidative-nitrosative stress (indicated by augmentation of lipid peroxidation and nitrite) and a reduction of glutathione levels in the hippocampus and frontal cortex region of arsenictreated rats. Moreover, arsenic administration caused mitochondrial complexes impairment and reduction of acetylcholinesterase level. On the other hand, chronic treatment with edaravone (10 mg/kg) significantly ameliorated the arsenic-induced behavioral deficits and neurochemical anomalies. CONCLUSION: This study suggests that edaravone confers neuroprotection against arsenic-induced memory impairment and anxiety-like behavior, which may be attributed to the inhibition of oxidativenitrosative stress and amelioration of cholinergic and mitochondrial functions.


Asunto(s)
Arsénico , Masculino , Ratas , Animales , Edaravona , Ratas Wistar , Acetilcolinesterasa , Colinérgicos , Mitocondrias
10.
Nanoscale ; 15(24): 10319-10329, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37282835

RESUMEN

The ability to control the structural properties of molecular layers is a key for the design and preparation of organic electronic devices. While microscopic growth studies of planar, rigid and symmetric π-conjugated molecules have been performed to a larger extent, this is less the case for elongated donor-acceptor molecules with flexible functional groups, which are particularly interesting due to their high dipole moments. Prototypical molecules of this type are merocyanines (MCs), which have been widely studied for the use as efficient absorbers in organic photodetectors. For maximized light absorption and optimized electronic properties the molecular arrangement which is affected by the initial assembly of the films at the supporting substrate interface is decisive. The situation deserves special attention, when the surface nucleation leads to so far not known and bulk-unlike aggregates. Here, we report on the growth of a typical MC (HB238) on the Ag(100) surface, serving as the substrate. In the energetically preferred phase, the molecules adsorb in a face-on geometry and organize in tetramers with a circular dipole arrangement. The tetramers further self-order in large, enantiopure domains with a periodicity that is commensurate to the Ag(100) surface, likely due to a specific bonding of the thiophene and thiazol rings to the Ag surface. Using scanning tunneling microscopy (STM) in combination with low energy electron diffraction we derive the detailed structure of the tetramers. The center of the tetramer, which is most prominent in STM images, consists of four upward pointing tert-butyl groups from four molecules. It is encircled by a ring of four hydrogen bonds between terminal CN-groups and thiophene rings on neighboring molecules. In parallel, the surface interaction modifies the intramolecular dipole, which is revealed from photoemission spectroscopy. Hence, this example shows how the surface template effect leads to an unforeseen molecular organization which is considerably more complex compared to that in the bulk phases of HB238, which feature paired dipoles.


Asunto(s)
Microscopía de Túnel de Rastreo , Propiedades de Superficie , Conformación Molecular , Microscopía de Túnel de Rastreo/métodos , Espectroscopía de Fotoelectrones
11.
Curr Drug Targets ; 23(9): 902-912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35240954

RESUMEN

The vascular endothelium is the innermost lining of blood vessels, which maintains vasoconstriction and vasodilation. Loss of vascular tone is a hallmark for cardiovascular disorders. Numerous factors, such as over-activation of the renin-angiotensin-aldosterone system, kinases, growth factors, etc., play a crucial role in the induction and progression of vascular abrasion. Interestingly, dysregulation of these pathways either enhances the intensity of oxidative stress, or these pathways are affected by oxidative stress. Thus, oxidative stress has been considered a key culprit in the progression of vascular endothelial dysfunction. Oxidative stress induced by reactive oxygen and nitrogen species causes abnormal gene expression, alteration in signal transduction, and the activation of pathways, leading to induction and progression of vascular injury. In addition, numerous antioxidants have been noted to possess promising therapeutic potential in preventing the development of vascular endothelial dysfunction. Therefore, we have focused on current perspectives in oxidative stress signalling to evaluate common biological processes whereby oxidative stress plays a crucial role in the progression of vascular endothelial dysfunction.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Vasculares , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/metabolismo , Endotelio Vascular , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
12.
Saudi J Biol Sci ; 29(5): 3326-3337, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35185356

RESUMEN

COVID-19 (coronavirus disease-2019) is a contagious illness that has been declared a global epidemic by the World Health Organization (WHO). The coronavirus causes diseases ranging in severity from the common cold to severe respiratory diseases and death. Coronavirus primarily affects blood pressure by attaching to the angiotensin converting enzyme 2 (ACE 2) receptor. This virus has an impact on multiple organ systems, including the central nervous system, immune system, cardiovascular system, peripheral nervous system, gastrointestinal tract, endocrine system, urinary system, skin, and pregnancy. For the prevention of COVID-19, various vaccines such as viral-like particle vaccines, entire inactivated virus vaccines, viral vector vaccines, live attenuated virus vaccines, subunit vaccines, RNA vaccines, and DNA vaccines are now available. Some of the COVID-19 vaccines are reported to cause a variety of adverse effects that range from mild to severe in nature. SARS-CoV-2 replication is controlled by the RNA-Dependent RNA-Polymerase enzyme (RdRp). The availability of FDA-approved anti-RdRp drugs (Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir) as potent drugs against SARS-CoV-2 that tightly bind to its RdRp may aid in the treatment of patients and reduce the risk of the mysterious new form of COVID-19 viral infection. RdRp inhibitors, such as remdesivir (an anti-Ebola virus experimental drug) and favipiravir (an anti-influenza drug), inhibit RdRp and thus slow the progression of COVID-19 and associated clinical symptoms, as well as significantly shorten recovery time. Molnupiravir, an orally active RdRp inhibitor and noval broad spectrum antiviral agent, is an isopropyl pro-drug of EIDD-1931 for emergency use. Galidesivir's in vitro and in vivo activities are limited to RNA of human public health concern. Top seeds for antiviral treatments with high potential to combat the SARS-CoV-2 strain include guanosine derivatives (IDX-184), setrobuvir, and YAK. The goal of this review is to compile scattered information on available COVID-19 vaccines and other treatments for protecting the human body from their harmful effects and to provide options for making better choices in a timely manner.

13.
J Infect Public Health ; 15(5): 566-572, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35462191

RESUMEN

An unprecedented global health crisis has developed due to the emergence of the mysterious coronavirus-2 of the severe acute respiratory syndrome, which has resulted in millions of deaths around the globe, as no therapy could control the 'cytokine storm'. Consequently, many vaccines have been developed and several others are being developed for this infection. Although most of the approved vaccines have been highly effective, many developing, and economically poor countries are still deprived of vaccination against SARS-CoV-2 due to the unequal distribution of vaccines worldwide. Furthermore, the uncertainty about the effectiveness of the available vaccines against the emerging mutants and variants also remains a matter of concern. Due to the multistep pathogenesis and unique features, combination therapy using safe immunomodulatory and antiviral drugs should be considered as the most effective and acceptable therapeutic regimen for this infection. Based on a thorough assessment of the literature, it was determined that it would be interesting to study the therapeutic potential of ivermectin and doxycycline, given their roles in several biological pathways involved in SARS CoV-2 pathogenesis. Following that, a comprehensive literature search was undertaken using Scopus, Web of Science, and Pubmed, depending on the inclusion and exclusion criteria. The present study provides a mechanism and comprehensive report, highlighting the role of combined therapy with ivermectin and doxycycline in alleviating the 'cytokine storm' of COVID-19 infection.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/prevención & control , Doxiciclina/uso terapéutico , Humanos , Ivermectina/uso terapéutico , SARS-CoV-2 , Vacunación
14.
Saudi J Biol Sci ; 28(12): 7567-7574, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34608370

RESUMEN

BACKGROUND AND OBJECTIVE: Coronavirus 2019 (COVID-19) is caused by 'severe acute respiratory syndrome coronavirus 2' (SARS-CoV-2), first reported in Wuhan, China in December 2019, which eventually became a global disaster. Various key mediators have been reported in the pathogenesis of COVID-19. However, no effective pharmacological intervention has been available to combat COVID-19 complications. The present study screens nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) as potential inhibitors of this present generation coronavirus infection using an in-silico approach. MATERIALS AND METHODS: The SARS-CoV-2 proteins (nucleocapsid, proteases, post-fusion core, phosphatase, endoriboruclease) and ACE-2 protein were selected. The 2D structure of nicotinamide ribonucleoside and nicotinamide ribonucleotide was drawn using ChemDraw 14.0 and saved in .cdx format. The results were analyzed using two parameters: full fitness energy and binding free energy (ΔG). RESULTS: The full fitness energy and estimated ΔG values from docking of NM, and NMN with selected SARS-CoV-2 target proteins, ADMET prediction and Target prediction indicate the interaction of NR and NMN in the treatment of COVID-19. CONCLUSIONS: Based on full fitness energy and estimated ΔG values from docking studies of NM and NAM with selected SARS-CoV-2 target proteins, ADME prediction, target prediction and toxicity prediction, we expect a possible therapeutic efficacy of NR in the treatment of COVID-19.

15.
J Diet Suppl ; 16(2): 227-244, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29621403

RESUMEN

This study investigated the effect of Aloe vera in diabetes-induced nephropathy in rats. As diabetes-associated hyperlipidemia and oxidative stress have been implicated in the pathogenesis of diabetic nephropathy, we evaluated the protective effect of whole leaf extract of Aloe vera on the basis of its hypolipidemic and antioxidative property. Aloe vera (300 mg/kg orally) has been noted to possess renoprotective effect in experimental diabetic nephropathy. However, its mechanism is not fully understood. Rats were administered streptozotocin (STZ) (55 mg/kg intraperitoneally once) to induce experimental diabetes mellitus. The development of diabetic nephropathy was assessed biochemically and histologically. In addition, the diabetes-induced lipid profile and renal oxidative stress were assessed. The single administration of STZ produced diabetes, which induced renal oxidative stress, altered the lipid profile, and subsequently produced nephropathy in eight weeks by increasing serum creatinine, blood urea nitrogen, proteinuria, and glomerular damage. Treatment with Aloe vera (300 mg/kg/day orally) was noted to be more effective against the diabetes-induced nephropathy and renal oxidative stress as compared to lisinopril (1 mg/kg/day orally), a reference agent. It may be concluded that diabetes-induced oxidative stress and lipid alterations may be accountable for the induction of nephropathy in diabetic rats. The treatment with Aloe vera (300 mg/kg/day orally) may have prevented the development of diabetes-induced nephropathy by reducing lipid alteration, decreasing renal oxidative stress, and providing direct renoprotective action.


Asunto(s)
Aloe/química , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Hiperlipidemias/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Animales , Antioxidantes/administración & dosificación , Glucemia/análisis , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Hiperlipidemias/etiología , Riñón/patología , Glomérulos Renales/patología , Lípidos/sangre , Lisinopril/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Hojas de la Planta/química , Ratas , Ratas Wistar
16.
J Agric Food Chem ; 56(4): 1479-87, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18220346

RESUMEN

Today proteases have become an integral part of the food and feed industry, and plant latex could be a potential source of novel proteases with unique substrate specificities and biochemical properties. A new protease named "wrightin" is purified from the latex of the plant Wrightia tinctoria (Family Apocynaceae) by cation-exchange chromatography. The enzyme is a monomer having a molecular mass of 57.9 kDa (MALDI-TOF), an isoelectric point of 6.0, and an extinction coefficient (epsilon1%280) of 36.4. Optimum activity is achieved at a pH of 7.5-10 and a temperature of 70 degrees C. Wrightin hydrolyzes denatured natural substrates such as casein, azoalbumin, and hemoglobin with high specific activity; for example, the Km value is 50 microM for casein as substrate. Wrightin showed weak amidolytic activity toward L-Ala-Ala-p-nitroanilide but completely failed to hydrolyze N-alpha-benzoyl- DL-arginine-p-nitroanilide (BAPNA), a preferred substrate for trypsin-like enzymes. Complete inhibition of enzyme activity by serine protease inhibitors such as PMSF and DFP indicates that the enzyme belongs to the serine protease class. The enzyme was not inhibited by SBTI and resists autodigestion. Wrightin is remarkably thermostable, retaining complete activity at 70 degrees C after 60 min of incubation and 74% of activity after 30 min of incubation at 80 degrees. Besides, the enzyme is very stable over a broad range of pH from 5.0 to 11.5 and remains active in the presence of various denaturants, surfactants, organic solvents, and metal ions. Thus, wrightin might be a potential candidate for various applications in the food and biotechnological industries, especially in operations requiring high temperatures.


Asunto(s)
Apocynaceae/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/aislamiento & purificación , Cromatografía por Intercambio Iónico/métodos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Punto Isoeléctrico , Cinética , Látex , Peso Molecular , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato , Temperatura
17.
Dis Model Mech ; 7(7): 907-13, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24311731

RESUMEN

Chordoma is a malignant tumor thought to arise from remnants of the embryonic notochord, with its origin in the bones of the axial skeleton. Surgical resection is the standard treatment, usually in combination with radiation therapy, but neither chemotherapeutic nor targeted therapeutic approaches have demonstrated success. No animal model and only few chordoma cell lines are available for preclinical drug testing, and, although no druggable genetic drivers have been identified, activation of EGFR and downstream AKT-PI3K pathways have been described. Here, we report a zebrafish model of chordoma, based on stable transgene-driven expression of HRASV12 in notochord cells during development. Extensive intra-notochordal tumor formation is evident within days of transgene expression, ultimately leading to larval death. The zebrafish tumors share characteristics of human chordoma as demonstrated by immunohistochemistry and electron microscopy. The mTORC1 inhibitor rapamycin, which has some demonstrated activity in a chordoma cell line, delays the onset of tumor formation in our zebrafish model, and improves survival of tumor-bearing fish. Consequently, the HRASV12-driven zebrafish model of chordoma could enable high-throughput screening of potential therapeutic agents for the treatment of this refractory cancer.


Asunto(s)
Cordoma/embriología , Cordoma/patología , Modelos Animales de Enfermedad , Mutación/genética , Notocorda/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Pez Cebra , Animales , Animales Modificados Genéticamente , Carcinogénesis/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Inmunohistoquímica , Notocorda/efectos de los fármacos , Notocorda/patología , Notocorda/ultraestructura , Especificidad de Órganos/efectos de los fármacos , Sirolimus/farmacología , Análisis de Supervivencia , Pez Cebra/embriología , Pez Cebra/genética
18.
Plant Physiol Biochem ; 49(7): 721-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21531144

RESUMEN

A high molecular mass novel metalloprotease, cotinifolin is purified from the latex of Euphorbia cotinifolia by a combination of anion exchange and hydrophobic interaction chromatography. The nonglycosylated enzyme has a molecular mass of 79.76 kDa (ESI-MS) and the isoelectric point of the enzyme is pH 7.7. Cotinifolin hydrolyzes denatured natural substrates such as casein, azoalbumin, and hemoglobin with high specific activity. The K(m) value of the enzyme was found to be 20 µM with azocasein. The enzyme is not prone to autolysis even at very low concentrations. Polyclonal antibodies specific to enzyme was raised and immunodiffusion reveals that the enzyme has unique antigenic determinants. Maximum caseinolytic activity of cotinifolin is observed in the range of pH 7.0-8.0 and temperature of 50 °C. Using 0.2 mL of 1 mM solution of each metal ion, the purified protease was inhibited slightly by Ba²âº and Mn²âº, moderately by Mg²âº, Ca²âº and Cs²âº and significantly by Zn²âº, Cu²âº and Co²âº. On the other hand, substantial activation in caseinolytic activity was achieved by Ni²âº. The enzyme activity was also inhibited by EDTA and o-phenanthroline but not by any other protease inhibitors. Perturbation studies by temperature, pH, and chaotrophs of the enzyme also reveal its high stability as seen by CD, fluorescence and proteolytic activity. Spectroscopic studies reveal that cotinifolin has secondary structural features with α/ß type with approximately 9% of α-helicity. Easy availability and simple purification procedure makes the enzyme a good system for biophysical study, biotechnological and industrial applications.


Asunto(s)
Euphorbia/enzimología , Metaloproteasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinales/enzimología , Cationes Bivalentes/farmacología , Cromatografía por Intercambio Iónico , Cromatografía Liquida , Dicroismo Circular , Detergentes/farmacología , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Punto Isoeléctrico , Metaloproteasas/química , Metaloproteasas/aislamiento & purificación , Peso Molecular , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Estabilidad Proteica , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Temperatura
19.
Biochimie ; 91(8): 951-60, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19403104

RESUMEN

Proteinase K (E.C. 3.4.21.64), a serine proteinase from fungus Tritirachium album, has been used as a model system to investigate the conformational changes induced by monohydric alcohols at low pH. Proteinase K belongs to alpha/beta class of proteins and maintains structural integrity in the range of pH 7.0-3.0. Enzyme acquires partially unfolded conformation (U(P)) at pH 2.5 with lower activity, partial loss of tertiary structure and exposure of some hydrophobic patches. Proteinase K in stressed state at pH 2.5 is chosen and the conformational changes induced by alkyl alcohols (methanol/ethanol/isopropanol) are studied. At critical concentration of alcohol, conformational switch occurs in the protein structure from alpha/beta to beta-sheet driving the protein into O-state. Complete loss of tertiary contacts and proteolytic activity in O-sate emphasize the involvement of alpha regions in maintaining the active site of the enzyme. Moreover, isopropanol induced unfolding of proteinase K in U(P) state occurred in two steps with the formation of beta state at low alcohol concentration followed by stabilization of beta state at high alcohol concentration. GuHCl and temperature induced unfolding of proteinase K in O-state (in 50% isopropanol) is non-cooperative as the transition curves are biphasic. This suggests that the structure of proteinase K in O-state has melted alpha regions and stabilized beta regions and that these differentially stabilized regions unfold sequentially. Further, the O-state of proteinase K can be attained from complete unfolded protein by the addition of 50% isopropanol. Hence the alcohol-induced O-state is different from native state or completely unfolded state and shows characteristics of the molten globule-like state. Thus, this state may be functioning as an intermediary in the folding pathway of proteinase K.


Asunto(s)
Alcoholes/química , Alcoholes/farmacología , Endopeptidasa K/química , 2-Propanol/farmacología , Ascomicetos/enzimología , Dicroismo Circular , Relación Dosis-Respuesta a Droga , Endopeptidasa K/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Colorantes Fluorescentes/metabolismo , Guanidina/farmacología , Concentración de Iones de Hidrógeno , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Análisis Espectral , Temperatura , Agua/química
20.
Protein J ; 28(5): 213-23, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19629660

RESUMEN

Wrightin, a serine protease from Wrightia tinctoria, has been used as model system to examine structure-function and stability. Our studies show high stability of the enzyme with major elements of secondary structure being beta-sheets. Under neutral conditions the enzyme is stable in 8 M urea and high temperature. GuHCl induced unfolding of wrightin at lower pH cannot be satisfactorily fit to a two state model for unfolding. Multiple intermediates were identified during unfolding of wrightin. Further, two intermediates, early and late are identified in the urea induced unfolding pathway at pH 3.0. Spectroscopic properties of intermediate states are analyzed and interpreted.


Asunto(s)
Apocynaceae/enzimología , Proteínas de Plantas/química , Pliegue de Proteína , Serina Endopeptidasas/química , Apocynaceae/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA