Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(17): 170502, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33156670

RESUMEN

We present an efficient approach to achieving arbitrary, high-fidelity control of a multilevel quantum system using optimal control techniques. As an demonstration, we implement a continuous, software-defined microwave pulse to realize a 0↔2 SWAP gate that achieves an average gate fidelity of 99.4%. We describe our procedure for extracting the system Hamiltonian, calibrating the quantum and classical hardware chain, and evaluating the gate fidelity. Our work represents an alternative, fully generalizable route towards achieving universal quantum control by leveraging optimal control techniques.

2.
Phys Rev Lett ; 123(4): 046601, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31491239

RESUMEN

We report the first electronic compressibility measurements of magic-angle twisted bilayer graphene. The evolution of the compressibility with carrier density offers insights into the interaction-driven ground state that have not been accessible in prior transport and tunneling studies. From capacitance measurements, we determine the chemical potential as a function of carrier density and find the widths of the energy gaps at fractional filling of the moiré lattice. In the electron-doped regime, we observe unexpectedly large gaps at quarter- and half-filling and strong electron-hole asymmetry. Moreover, we measure a ∼35 meV minibandwidth that is much wider than most theoretical estimates. Finally, we explore the field dependence up to the quantum Hall regime and observe significant differences from transport measurements.

3.
Med Phys ; 40(11): 111712, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24320420

RESUMEN

PURPOSE: The spatial and temporal tracking performance of a commercially available 3D optical surface imaging system is evaluated for its potential use in frameless stereotactic radiosurgery head tracking applications. METHODS: Both 3D surface and infrared (IR) marker tracking were performed simultaneously on a head phantom mounted on an xyz motion stage and on four human subjects. To allow spatial and temporal comparison on human subjects, three points were simultaneously monitored, including the upper facial region (3D surface), a dental plate (IR markers), and upper forehead (IR markers). RESULTS: For both static and dynamic phantom studies, the 3D surface tracker was found to have a root mean squared error (RMSE) of approximately 0.30 mm for region-of-interest (ROI) surface sizes greater than 1000 vertex points. Although, the processing period (1/fps) of the 3D surface system was found to linearly increase as a function of the number of ROI vertex points, the tracking accuracy was found to be independent of ROI size provided that the ROI was sufficiently large and contained features for registration. For human subjects, the RMSE between 3D surface tracking and IR marker tracking modalities was 0.22 mm left-right (x-axis), 0.44 mm superior-inferior (y-axis), 0.27 mm anterior-posterior (z-axis), 0.29° pitch (around x-axis), 0.18° roll (around y-axis), and 0.15° yaw (around z-axis). CONCLUSIONS: 3D surface imaging has the potential to provide submillimeter level head motion tracking. This is provided that a highly accurate camera-to-LINAC frame of reference calibration can be performed and that the reference ROI is of sufficient size and contains suitable surface features for registration.


Asunto(s)
Cabeza/efectos de la radiación , Radiocirugia/instrumentación , Radiocirugia/métodos , Calibración , Diseño de Equipo , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Rayos Infrarrojos , Movimiento , Óptica y Fotónica , Posicionamiento del Paciente , Fantasmas de Imagen , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA