Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(6): 3160-3236, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36877871

RESUMEN

The performance and stability of metal halide perovskite solar cells strongly depend on precursor materials and deposition methods adopted during the perovskite layer preparation. There are often a number of different formation pathways available when preparing perovskite films. Since the precise pathway and intermediary mechanisms affect the resulting properties of the cells, in situ studies have been conducted to unravel the mechanisms involved in the formation and evolution of perovskite phases. These studies contributed to the development of procedures to improve the structural, morphological, and optoelectronic properties of the films and to move beyond spin-coating, with the use of scalable techniques. To explore the performance and degradation of devices, operando studies have been conducted on solar cells subjected to normal operating conditions, or stressed with humidity, high temperatures, and light radiation. This review presents an update of studies conducted in situ using a wide range of structural, imaging, and spectroscopic techniques, involving the formation/degradation of halide perovskites. Operando studies are also addressed, emphasizing the latest degradation results for perovskite solar cells. These works demonstrate the importance of in situ and operando studies to achieve the level of stability required for scale-up and consequent commercial deployment of these cells.

2.
Chem Rev ; 123(12): 7890-7952, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37311205

RESUMEN

Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.

3.
J Am Chem Soc ; 146(5): 3102-3113, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38254269

RESUMEN

Indium phosphide quantum dots have become an industrially relevant material for solid-state lighting and wide color gamut displays. The synthesis of indium phosphide quantum dots from indium carboxylates and tris(trimethylsilyl)phosphine (P(SiMe3)3) is understood to proceed through the formation of magic-sized clusters, with In37P20(O2CR)51 being the key isolable intermediate. The reactivity of the In37P20(O2CR)51 cluster is a vital parameter in controlling the conversion to quantum dots. Herein, we report structural perturbations of In37P20(O2CR)51 clusters induced by tuning the steric properties of a series of substituted phenylacetate ligands. This approach allows for control over reactivity with P(SiMe3)3, where meta-substituents enhance the susceptibility to ligand displacement, and para-substituents hinder phosphine diffusion to the core. Thermolysis studies show that with complete cluster dissolution, steric profile can modulate the nucleation period, resulting in a nanocrystal size dependence on ligand steric profile. The enhanced stability from ligand engineering also allows for the isolation and structural characterization by single-crystal X-ray diffraction of a new III-V magic-sized cluster with the formula In26P13(O2CR)39. This intermediate precedes the In37P20(O2CR)51 cluster on the InP QD reaction coordinate. The physical and electronic structure of this cluster are analyzed, providing new insight into previously unrecognized relationships between II-VI and III-V materials and the discrete growth of III-V cluster intermediates.

4.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34645709

RESUMEN

Glasses prepared by physical vapor deposition (PVD) are anisotropic, and the average molecular orientation can be varied significantly by controlling the deposition conditions. While previous work has characterized the average structure of thick PVD glasses, most experiments are not sensitive to the structure near an underlying substrate or interface. Given the profound influence of the substrate on the growth of crystalline or liquid crystalline materials, an underlying substrate might be expected to substantially alter the structure of a PVD glass, and this near-interface structure is important for the function of organic electronic devices prepared by PVD, such as organic light-emitting diodes. To study molecular packing near buried organic-organic interfaces, we prepare superlattice structures (stacks of 5- or 10-nm layers) of organic semiconductors, Alq3 (Tris-(8-hydroxyquinoline)aluminum) and DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene), using PVD. Superlattice structures significantly increase the fraction of the films near buried interfaces, thereby allowing for quantitative characterization of interfacial packing. Remarkably, both X-ray scattering and spectroscopic ellipsometry indicate that the substrate exerts a negligible influence on PVD glass structure. Thus, the surface equilibration mechanism previously advanced for thick films can successfully describe PVD glass structure even within the first monolayer of deposition on an organic substrate.

5.
J Am Chem Soc ; 145(50): 27480-27492, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38061033

RESUMEN

Magic-sized clusters (MSCs) are kinetically stable, atomically precise intermediates along the quantum dot (QD) reaction potential energy surface. Literature precedent establishes two classes of cadmium selenide MSCs with QD-like inorganic cores: one class is proposed to be cation-rich with a zincblende crystal structure, while the other is proposed to be stoichiometric with a "wurtzite-like" core. However, the wide range of synthetic protocols used to access MSCs has made direct comparisons of their structure and surface chemistry difficult. Furthermore, the physical and chemical relationships between MSC polymorphs are yet to be established. Here, we demonstrate that both cation-rich and stoichiometric CdSe MSCs can be synthesized from identical reagents and can be interconverted through the addition of either excess cadmium or selenium precursor. The structural and compositional differences between these two polymorphs are contrasted using a combination of 1H NMR spectroscopy, X-ray diffraction (XRD), pair distribution function (PDF) analysis, inductively coupled plasma optical emission spectroscopy, and UV-vis transient absorption spectroscopy. The subsequent polymorph interconversion reactions are monitored by UV-vis absorption spectroscopy, with evidence for an altered cluster atomic structure observed by powder XRD and PDF analysis. This work helps to simplify the complex picture of the CdSe nanocrystal landscape and provides a method to explore structure-property relationships in colloidal semiconductors through atomically precise synthesis.

6.
Inorg Chem ; 62(17): 6674-6687, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37042788

RESUMEN

We demonstrate colloidal, layer-by-layer growth of metal oxide shells on InP quantum dots (QDs) at room temperature. We show with computational modeling that native InP QD surface oxides give rise to nonradiative pathways due to the presence of surface-localized dark states near the band edges. Replacing surface indium with zinc to form a ZnO shell results in reduced nonradiative decay and a density of states at the valence band edge that resembles defect-free, stoichiometric InP. We then developed a synthetic strategy using stoichiometric amounts of common atomic layer deposition precursors in alternating cycles to achieve layer-by-layer growth. Metal-oxide-shelled InP QDs show bulk and local structural perturbations as determined by X-ray diffraction and extended X-ray absorption fine structure spectroscopy. Upon growing ZnSe shells of varying thickness on the oxide-shelled QDs, we observe increased photoluminescence (PL) quantum yields and narrowing of the emission linewidths that we attribute to decreased ion diffusion to the shell, as supported by phosphorus X-ray emission spectroscopy. These results present a versatile strategy to control QD interfaces for novel heterostructure design by leveraging surface oxides. This work also contributes to our understanding of the connections between structural complexity and PL properties in technologically relevant colloidal optoelectronic materials.

7.
Nat Mater ; 20(7): 991-999, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33686277

RESUMEN

Layered oxides widely used as lithium-ion battery electrodes are designed to be cycled under conditions that avoid phase transitions. Although the desired single-phase composition ranges are well established near equilibrium, operando diffraction studies on many-particle porous electrodes have suggested phase separation during delithiation. Notably, the separation is not always observed, and never during lithiation. These anomalies have been attributed to irreversible processes during the first delithiation or reversible concentration-dependent diffusion. However, these explanations are not consistent with all experimental observations such as rate and path dependencies and particle-by-particle lithium concentration changes. Here, we show that the apparent phase separation is a dynamical artefact occurring in a many-particle system driven by autocatalytic electrochemical reactions, that is, an interfacial exchange current that increases with the extent of delithiation. We experimentally validate this population-dynamics model using the single-phase material Lix(Ni1/3Mn1/3Co1/3)O2 (0.5 < x < 1) and demonstrate generality with other transition-metal compositions. Operando diffraction and nanoscale oxidation-state mapping unambiguously prove that this fictitious phase separation is a repeatable non-equilibrium effect. We quantitatively confirm the theory with multiple-datastream-driven model extraction. More generally, our study experimentally demonstrates the control of ensemble stability by electro-autocatalysis, highlighting the importance of population dynamics in battery electrodes (even non-phase-separating ones).

8.
Nat Mater ; 20(5): 618-623, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33398119

RESUMEN

Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis1, quantum materials2 and molecular optoelectronics3. Experimental characterization of such distortions requires techniques sensitive to the formation of point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites4 via femtosecond resolution diffuse X-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally distorted structure and reveals radially expanding nanometre-scale strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and shape of this polaronic distortion are obtained, providing direct insights into the dynamic structural distortions that occur in these materials5-9. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the optoelectronic functionality of the hybrid perovskites.

9.
J Chem Phys ; 156(1): 014504, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34998353

RESUMEN

We control the anisotropic molecular packing of vapor-deposited glasses of ABH113, a deuterated anthracene derivative with promise for future organic light emitting diode materials, by changing the deposition rate and substrate temperature at which they are prepared. We find that at substrate temperatures from 0.65 Tg to 0.92 Tg, the deposition rate significantly modifies the orientational order in the vapor-deposited glasses as characterized by x-ray scattering and birefringence. Both measures of anisotropic order can be described by a single deposition rate-substrate temperature superposition (RTS). This supports the applicability of the surface equilibration mechanism and generalizes the RTS principle from previous model systems with liquid crystalline order to non-mesogenic organic semiconductors. We find that vapor-deposited glasses of ABH113 have significantly enhanced density and thermal stability compared to their counterparts prepared by liquid-cooling. For organic semiconductors, the results of this study provide an efficient guide for using the deposition rate to prepare stable glasses with controlled molecular packing.

10.
Proc Natl Acad Sci U S A ; 116(43): 21421-21426, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31527259

RESUMEN

We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction. Understanding of the mechanism enables informed engineering of different levels of smectic order in vapor-deposited glasses to suit various applications. The preparation of a glass with orientational and translational order from a nonliquid crystal opens up an exciting paradigm for accessing extreme anisotropy in glassy solids.

11.
Proc Natl Acad Sci U S A ; 116(47): 23404-23409, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685626

RESUMEN

Phase transitions in halide perovskites triggered by external stimuli generate significantly different material properties, providing a great opportunity for broad applications. Here, we demonstrate an In-based, charge-ordered (In+/In3+) inorganic halide perovskite with the composition of Cs2In(I)In(III)Cl6 in which a pressure-driven semiconductor-to-metal phase transition exists. The single crystals, synthesized via a solid-state reaction method, crystallize in a distorted perovskite structure with space group I4/m with a = 17.2604(12) Å, c = 11.0113(16) Å if both the strong reflections and superstructures are considered. The supercell was further confirmed by rotation electron diffraction measurement. The pressure-induced semiconductor-to-metal phase transition was demonstrated by high-pressure Raman and absorbance spectroscopies and was consistent with theoretical modeling. This type of charge-ordered inorganic halide perovskite with a pressure-induced semiconductor-to-metal phase transition may inspire a range of potential applications.

12.
Proc Natl Acad Sci U S A ; 115(47): 11905-11910, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30401737

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) have become an important class of semiconductors for solar cells and other optoelectronic applications. Electron-phonon coupling plays a critical role in all optoelectronic devices, and although the lattice dynamics and phonon frequencies of HOIPs have been well studied, little attention has been given to phonon lifetimes. We report high-precision momentum-resolved measurements of acoustic phonon lifetimes in the hybrid perovskite methylammonium lead iodide (MAPI), using inelastic neutron spectroscopy to provide high-energy resolution and fully deuterated single crystals to reduce incoherent scattering from hydrogen. Our measurements reveal extremely short lifetimes on the order of picoseconds, corresponding to nanometer mean free paths and demonstrating that acoustic phonons are unable to dissipate heat efficiently. Lattice-dynamics calculations using ab initio third-order perturbation theory indicate that the short lifetimes stem from strong three-phonon interactions and a high density of low-energy optical phonon modes related to the degrees of freedom of the organic cation. Such short lifetimes have significant implications for electron-phonon coupling in MAPI and other HOIPs, with direct impacts on optoelectronic devices both in the cooling of hot carriers and in the transport and recombination of band edge carriers. These findings illustrate a fundamental difference between HOIPs and conventional photovoltaic semiconductors and demonstrate the importance of understanding lattice dynamics in the effort to develop metal halide perovskite optoelectronic devices.

13.
Proc Natl Acad Sci U S A ; 115(23): E5261-E5268, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784802

RESUMEN

Electrodeposited manganese oxide films are promising catalysts for promoting the oxygen evolution reaction (OER), especially in acidic solutions. The activity of these catalysts is known to be enhanced by the introduction of Mn3+ We present in situ electrochemical and X-ray absorption spectroscopic studies, which reveal that Mn3+ may be introduced into MnO2 by an electrochemically induced comproportionation reaction with Mn2+ and that Mn3+ persists in OER active films. Extended X-ray absorption fine structure (EXAFS) spectra of the Mn3+-activated films indicate a decrease in the Mn-O coordination number, and Raman microspectroscopy reveals the presence of distorted Mn-O environments. Computational studies show that Mn3+ is kinetically trapped in tetrahedral sites and in a fully oxidized structure, consistent with the reduction of coordination number observed in EXAFS. Although in a reduced state, computation shows that Mn3+ states are stabilized relative to those of oxygen and that the highest occupied molecular orbital (HOMO) is thus dominated by oxygen states. Furthermore, the Mn3+(Td) induces local strain on the oxide sublattice as observed in Raman spectra and results in a reduced gap between the HOMO and the lowest unoccupied molecular orbital (LUMO). The confluence of a reduced HOMO-LUMO gap and oxygen-based HOMO results in the facilitation of OER on the application of anodic potentials to the δ-MnO2 polymorph incorporating Mn3+ ions.

14.
Angew Chem Int Ed Engl ; 60(19): 10880-10887, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33320987

RESUMEN

We investigate high-valent oxygen redox in the positive Na-ion electrode P2-Na0.67-x [Fe0.5 Mn0.5 ]O2 (NMF) where Fe is partially substituted with Cu (P2-Na0.67-x [Mn0.66 Fe0.20 Cu0.14 ]O2 , NMFC) or Ni (P2-Na0.67-x [Mn0.65 Fe0.20 Ni0.15 ]O2 , NMFN). From combined analysis of resonant inelastic X-ray scattering and X-ray near-edge structure with electrochemical voltage hysteresis and X-ray pair distribution function profiles, we correlate structural disorder with high-valent oxygen redox and its improvement by Ni or Cu substitution. Density of states calculations elaborate considerable anionic redox in NMF and NMFC without the widely accepted requirement of an A-O-A' local configuration in the pristine materials (where A=Na and A'=Li, Mg, vacancy, etc.). We also show that the Jahn-Teller nature of Fe4+ and the stabilization mechanism of anionic redox could determine the extent of structural disorder in the materials. These findings shed light on the design principles in TM and anion redox for positive electrodes to improve the performance of Na-ion batteries.

15.
J Am Chem Soc ; 142(1): 392-406, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31793773

RESUMEN

Polymer aggregation and crystallization behavior play a crucial role in the performance of all-polymer solar cells (all-PSCs). Gaining control over polymer self-assembly via molecular design to influence bulk-heterojunction active-layer morphology, however, remains challenging. Herein, we show a simple yet effective way to modulate the self-aggregation of the commonly used naphthalene diimide (NDI)-based acceptor polymer (N2200), by systematically replacing a certain amount of alkyl side-chains with compact bulky side-chains (CBS). Specifically, we have synthesized a series of random copolymer (PNDI-CBSx) with different molar fractions (x = 0-1) of the CBS units and have found that both solution-phase aggregation and solid-state crystallinity of these acceptor polymers are progressively suppressed with increasing x as evidenced by UV-vis absorption, photoluminescence (PL) spectroscopies, thermal analysis, and grazing incidence X-ray scattering (GIWAXS) techniques. Importantly, as compared to the highly self-aggregating N2200, photovoltaic results show that blending of more amorphous acceptor polymers with donor polymer (PBDB-T) can enable all-PSCs with significantly increased PCE (up to 8.5%). The higher short-circuit current density (Jsc) results from the smaller polymer phase-separation domain sizes as evidenced by PL quenching and resonant soft X-ray scattering (R-SoXS) analyses. Additionally, we show that the lower crystallinity of the active layer is less sensitive to the film deposition methods. Thus, the transition from spin-coating to solution coating can be easily achieved with no performance losses. On the other hand, decreasing aggregation and crystallinity of the acceptor polymer too much reduces the photovoltaic performance as the donor phase-separation domain sizes increases. The highly amorphous acceptor polymers appear to induce formation of larger donor polymer crystallites. These results highlight the importance of a balanced aggregation strength between the donor and acceptor polymers to achieve high-performance all-PSCs with optimal active layer film morphology.

16.
Nat Mater ; 18(3): 256-265, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718861

RESUMEN

Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2-xIr1-ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure-redox coupling arises from the local stabilization of short approximately 1.8 Å metal-oxygen π bonds and approximately 1.4 Å O-O dimers during oxygen redox, which occurs in Li2-xIr1-ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employing oxygen redox chemistry.

17.
Nat Mater ; 18(7): 732-739, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209391

RESUMEN

Exploratory synthesis in new chemical spaces is the essence of solid-state chemistry. However, uncharted chemical spaces can be difficult to navigate, especially when materials synthesis is challenging. Nitrides represent one such space, where stringent synthesis constraints have limited the exploration of this important class of functional materials. Here, we employ a suite of computational materials discovery and informatics tools to construct a large stability map of the inorganic ternary metal nitrides. Our map clusters the ternary nitrides into chemical families with distinct stability and metastability, and highlights hundreds of promising new ternary nitride spaces for experimental investigation-from which we experimentally realized seven new Zn- and Mg-based ternary nitrides. By extracting the mixed metallicity, ionicity and covalency of solid-state bonding from the density functional theory (DFT)-computed electron density, we reveal the complex interplay between chemistry, composition and electronic structure in governing large-scale stability trends in ternary nitride materials.

18.
Acc Chem Res ; 52(9): 2673-2683, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31479242

RESUMEN

Electrochemical alloying reactions of group IV elements, such as Si, Ge, or Sn, with lithium provide a promising route to next-generation anode materials for lithium-ion batteries (LIBs) due to their high volumetric and gravimetric capacities. However, commercialization of these anodes is still sparse owing to quick capacity fading and limited Coulombic efficiency, which arise from large volume expansion leading to particle cracking and subsequent electrochemical inactivity. As a result, the solid electrolyte interphase (SEI), originating in the decomposition of the electrolyte upon battery operation outside the electrolyte's thermodynamic stability window, grows uncontrollably. While a large number of mitigation strategies have been developed, an improved nanometer level fundamental understanding of the (de)lithiation process and SEI formation, growth, and evolution is necessary to overcome these challenges. Toward this end, many experimental and theoretical approaches have been utilized but still provide an incomplete picture. This is due to the difficulty of investigating buried interfaces and interphases of lithiation products and thin SEI layers (nanometer-scale) in situ and with the desired nanometer accuracy. In this Account, we illustrate the utilization of in situ X-ray reflectivity (XRR) to provide nanometer-scale insights on the SEI nucleation, growth, and evolution, and well as the (de)lithiation process of Si electrodes. XRR is a nondestructive and surface- and interface-sensitive technique that allows for in situ investigations during battery operation under realistic electrochemical conditions. Insight into the system is provided via the surface-normal density profile, which is interpreted in terms of thickness, density, and roughness of individual surface layers, allowing monitoring of the interfacial morphology and chemistry evolution, through which the SEI growth and Si (de)lithiation process can be resolved. We utilized a model battery anode consisting of a native oxide terminated single crystalline Si wafer in half cell configuration with standard electrolyte in a specifically designed in situ XRR electrochemical cell. We have resolved the nucleation and formation process of the inner inorganic SEI and have observed two well-defined inorganic SEI layers on Si anodes: a bottom-SEI layer (adjacent to the electrode) formed via the lithiation of the native oxide and a top-SEI layer mainly consisting of the electrolyte decomposition product, LiF. This SEI layer grows during lithiation and contracts during delithiation. Further, our results show that the lithiation of crystalline Si (c-Si) is a layer-by-layer, reaction-limited, two-phase process with a well-defined phase boundary between LixSi lithiation product and c-Si; in contrast, the delithiation of LixSi and the lithiation of amorphous Si (a-Si) are reaction-limited, single-phase processes. Moreover, we resolved the influences of current density and the Si crystallographic orientation of the reaction interface on the (de)lithiation process. The implications of our findings are discussed with regard to battery performance.

19.
Langmuir ; 36(33): 9944-9951, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32787121

RESUMEN

Using nanoscale building blocks to construct hierarchical materials is a radical new branch point in materials discovery that promises new structures and emergent functionality. Understanding the design principles that govern nanoparticle assembly is critical to moving this field forward. By exploiting mixed ligand environments to target patchy nanoparticle surfaces, we have demonstrated a novel method of colloidal quantum dot (QD) assembly that gives rise to 2D structures. The equilibration of solutions of spherical and quasispherical QDs, including CdS, CdSe, and InP, with 2,2'-bipyridine-5,5'-diacrylic acid resulted in the preferential formation of 2D assemblies over the course of days as determined by transmission electron microscopy analysis. Small-angle X-ray scattering confirms the existence of the QD assemblies in solution. The dependence of the assembly on linker properties (length and rigidity), linker concentration, and total concentration was investigated, together with the data point to a mechanism involving ligand redistribution to create a patchy surface that maximizes the steric repulsion of neighboring QDs. By operating in an underexchanged regime, the arising patchiness results in enthalpically preferred directions of cross-linking that can be accessed by thermal equilibration.

20.
J Chem Phys ; 152(8): 084702, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32113337

RESUMEN

To understand the origins of failure and limited cycle life in lithium-ion batteries (LIBs), it is imperative to quantitatively link capacity-fading mechanisms to electrochemical and chemical processes. This is extremely challenging in real systems where capacity is lost during each cycle to both active material loss and solid electrolyte interphase (SEI) evolution, two indistinguishable contributions in traditional electrochemical measurements. Here, we have used a model system in combination with (1) precision measurements of the overall Coulombic efficiency via electrochemical experiments and (2) x-ray reflectivity measurements of the active material losses. The model system consisted of a 515 Å thick amorphous silicon (a-Si) thin film on silicon carbide in half-cell geometry using a carbonate electrolyte with LiPF6 salt. This approach allowed us to quantify the capacity lost during each cycle due to SEI evolution. Combined with electrochemical analysis, we identify SEI growth as the major contribution to capacity fading. Specifically, the continued SEI growth results in increasing overpotentials due to increased SEI resistance, and this leads to lower extent of lithiation when the cutoff voltage is reached during lithiation. Our results suggest that SEI grows more with increased time spent at low voltages where electrolyte decomposition is favored. Finally, we extracted a proportionality constant for SEI growth following a parabolic growth law. Our methodology allows for the quantitative determination of lithium-ion loss mechanisms in LIBs by separately tracking lithium ions within the active materials and the SEI and offers a powerful method of quantitatively understanding LIB loss mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA