RESUMEN
Single-walled carbon nanotube (SWNT) films, with exciting electronic properties are increasingly important for next-generation technologies. Here, an Iron-assisted floating solid catalyst chemical vapor deposition (IA-FSCCVD) method is developed for the controlled growth of high-quality and high-purity SWNT films. Titanium carbide nanoparticles with a high melting point are used as the solid catalysts, which provide a stable template for SWNT growth through the perpendicular growth mode. Trace amounts of iron are introduced to increase the efficiency of SWNT growth. Gas chromatography measurements and density functional theory show that the gas-phase iron acts as a pre-cracking assistance for the carbon source, promoting the growth of SWNTs. Carbon nanotube films with a high quality (average IG/ID = 166) are successfully prepared, a small diameter deviation (mean diameter of 1.6 nm), and a high content of SWNTs (97%) using the IA-FSCCVD platform. This work provides a powerful way to prepare the carbon nanotube aggregates with a controlled structure.
RESUMEN
To be considered as a promising candidate for mimicking biological nanochannels, carbon nanotubes (CNTs) have been used to explore the mass transport phenomena in recent years. In this study, the single nucleotide transport phenomena are comparatively studied using individual CNTs with a length of â¼15 µm and diameters ranging from 1.5 to 2.5 nm. In the case of CNTs with a diameter of 1.57-1.98 nm, the current traces of nucleotide transport are independent with the metallicity of CNTs and consist of single peak current pulses, whereas extraordinary stepwise current signals are observed in CNT with a diameter of 2.33 nm. It suggests that there is only one molecule in the nanochannel at a time until the diameter of CNT increases to 2.33 nm. Furthermore, it also demonstrates that the single nucleotides can be identified statistically according to their current pulses, indicating the potential application of CNT-based sensors for nucleotides identification.