Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ecol ; 31(14): 3963-3970, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35621391

RESUMEN

Toxoplasma infection in intermediate host species closely associates with inflammation. This association has led to suggestions that the behavioural changes associated with infection may be indirectly driven by the resulting sustained inflammation rather than a direct behavioural manipulation by the parasite. If this is correct, sustained inflammation in chronically infected rodents should present as widespread differences in the gastrointestinal microbiota due to the dependency between the composition of these microbiota and sustained inflammation. We conducted a randomized controlled experiment in rats that were assigned to a Toxoplasma-treatment, placebo-treatment or negative control group. We euthanised rats during the chronic phase of infection, collected their caecal stool samples and sequenced the V3-V4 region of the 16S rRNA gene to characterize the bacterial community in these samples. Toxoplasma infection did not induce widespread differences in the bacterial community composition of the gastrointestinal tract of rats. Rather, we found sex differences in the bacterial community composition of rats. We conclude that it is unlikely that sustained inflammation is the mechanism driving the highly specific behavioural changes observed in Toxoplasma-positive rats.


Asunto(s)
Microbioma Gastrointestinal , Toxoplasma , Animales , Bacterias , Femenino , Microbioma Gastrointestinal/genética , Inflamación/microbiología , Inflamación/parasitología , Masculino , ARN Ribosómico 16S/genética , Ratas , Toxoplasma/genética
2.
Neuroendocrinology ; 111(6): 505-520, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32447337

RESUMEN

Aversion to environmental cues of predators is an integral part of defensive behaviors in many prey animals. It enhances their survival and probability of future reproduction. At the same time, animals cannot be maximally defended because imperatives of defense usually trade-off with behaviors required for sexual reproduction like display of dominance and production of sexual pheromones. Here, we approach this trade-off through the lens of arginine vasopressin (AVP) neurons within the posterodorsal medial amygdala (MePD) of mice. This neuronal population is known to be involved in sexual behaviors like approach to sexually salient cues. We show that chemogenetic partial ablation of this neuronal population increases aversion to predator odors. Moreover, overexpression of AVP within this population is sufficient to reduce aversion to predator odors. The loss of fear of the predator odor occurs in parallel with increased recruitment of AVP neurons within the MePD. These observations suggest that AVP neurons in the medial aspect of the extended amygdala are a proximate locus for the reduction in innate fear during life stages dominated by reproductive efforts.


Asunto(s)
Arginina Vasopresina/metabolismo , Complejo Nuclear Corticomedial/metabolismo , Miedo/fisiología , Neuronas/metabolismo , Percepción Olfatoria/fisiología , Conducta Sexual Animal/fisiología , Animales , Dependovirus , Cadena Alimentaria , Vectores Genéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Dis Model Mech ; 16(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897115

RESUMEN

Alzheimer's disease (AD) is a degenerative brain disorder with a long prodromal period. An APPNL-G-F knock-in mouse model is a preclinical model to study incipient pathologies during the early stages of AD. Despite behavioral tests revealing broad cognitive deficits in APPNL-G-F mice, detecting these impairments at the early disease phase has been challenging. In a cognitively demanding task that assessed episodic-like memory, 3-month-old wild-type mice could incidentally form and retrieve 'what-where-when' episodic associations of their past encounters. However, 3-month-old APPNL-G-F mice, corresponding to an early disease stage without prominent amyloid plaque pathology, displayed impairment in recalling 'what-where' information of past episodes. Episodic-like memory is also sensitive to the effect of age. Eight-month-old wild-type mice failed to retrieve conjunctive 'what-where-when' memories. This deficit was also observed in 8-month-old APPNL-G-F mice. c-Fos expression revealed that impaired memory retrieval in APPNL-G-F mice was accompanied by abnormal neuronal hyperactivity in the medial prefrontal cortex and CA1 dorsal hippocampus. These observations can be used for risk stratification during preclinical AD to detect and delay the progression into dementia.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Memoria , Hipocampo/patología , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
4.
Int J Parasitol Parasites Wildl ; 22: 75-79, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37727638

RESUMEN

The single-celled parasite Toxoplasma gondii uses mice as a vector to reach its definitive host, the cat, where it can accomplish its sexual reproduction and produce oocysts, which will contaminate the environment. In this study, we have captured 103 feral house mice (Mus musculus) on Kangaroo Island, Australia. We have measured the level of exposure to T.gondii serologically with the Modified Agglutination Test and conjointly with a T.gondii B1 gene PCR. We have included stringent quality control steps in the molecular analysis to reduce the risk of false positivity and false negativity. Our results indicated a low seroprevalence of 0.97%, 95%CI [-0.36; 0.58] associated with the detection of T.gondii genetic material in 51.46%, 95%CI [41.93, 60.88] of mice brains. Neither sex nor mice body weight had an effect on the PCR outcome. We postulate that both the transmission route, horizontal or vertical, and natural selection processes could lead to this discordance which has been observed elsewhere in wild mice. The question of the biological mechanisms allowing the chronic infection of wild mice in the absence of a measurable humoral immune response remains. Our findings indicate that serological studies should not be used to measure the level of exposure to T.gondii in feral house mice.

5.
J Infect ; 86(1): 60-65, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347427

RESUMEN

OBJECTIVES: Toxoplasma gondii is a widely prevalent protozoan parasite in human populations. This parasite is thought to be primarily transmitted through undercooked meat and contamination by cat feces. Here, we seek to determine if Toxoplasma gondii cysts can be found within human semen. METHODS: We used a mixture of histological and immunofluorescence stains to visualize Toxoplasma gondii cysts in thin smears of human semen. Further, we probed for presence of bradyzoite-specific mRNA transcription using in-situ hybridization. RESULTS: We visualized Toxoplasma gondii cysts in ejaculates of immune-competent and latently infected human volunteers. We confirmed the encystment by probing transcription of a bradyzoite-specific gene in these structures. These observations extend previous observations of the parasite in semen of several non-human host species, including rats, dogs, and sheep. CONCLUSIONS: Toxoplasma gondii infection is a clinically significant infection, in view of its high prevalence, its purported role in neuropsychiatric disorders such as schizophrenia, as well as in the more serious form of congenital toxoplasmosis. Our demonstration of intact Toxoplasma gondii cysts in the ejaculate supports the possibility of sexual transmission of the parasite and provides an impetus for further investigations.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Animales , Ovinos , Ratas , Perros , Toxoplasma/genética , Semen/parasitología , Toxoplasmosis/parasitología , Conducta Sexual , Heces
6.
Front Nutr ; 9: 827286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284438

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite that mainly infects warm-blooded animals including humans. T. gondii can encyst and persist chronically in the brain, leading to a broad spectrum of neurological sequelae. Despite the associated health threats, no clinical drug is currently available to eliminate T. gondii cysts. In a continuous effort to uncover novel therapeutic agents for these cysts, the potential of nutritional products has been explored. Herein, we describe findings from in vitro and in vivo studies that support the efficacy of plant-based foods and nutraceuticals against brain cyst burden and cerebral pathologies associated with chronic toxoplasmosis. Finally, we discuss strategies to increase the translatability of preclinical studies and nutritional products to address whether nutritional therapy can be beneficial for coping with chronic T. gondii infections in humans.

7.
Trends Parasitol ; 37(5): 381-390, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33461902

RESUMEN

The protozoan parasite Toxoplasma gondii infects a wide range of intermediate hosts. The parasite produces brain cysts during the latent phase of its infection, in parallel to causing a loss of innate aversion in the rat host towards cat odors. Host behavioral change presumably reflects a parasitic manipulation to increase predation by definitive felid hosts, although evidence for increased predation is not yet available. In this opinion piece, we propose a neuroendocrine loop to explain the role of gonadal steroids in the parasitized hosts in mediating the behavioral manipulation. We argue that the presence of tissue cysts within the host brain is merely incidental to the behavioral change, without a necessary or sufficient role.


Asunto(s)
Conducta Animal , Encéfalo , Interacciones Huésped-Parásitos , Toxoplasmosis Animal , Animales , Control de la Conducta , Conducta Animal/fisiología , Encéfalo/parasitología , Interacciones Huésped-Parásitos/fisiología , Sistemas Neurosecretores/parasitología , Toxoplasmosis Animal/fisiopatología
8.
Mol Brain ; 14(1): 141, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526037

RESUMEN

Arginine vasopressin (AVP) is expressed in both hypothalamic and extra-hypothalamic neurons. The expression and role of AVP exhibit remarkable divergence between these two neuronal populations. Polysynaptic pathways enable these neuronal groups to regulate each other. AVP neurons in the paraventricular nucleus of the hypothalamus increase the production of adrenal stress hormones by stimulating the hypothalamic-pituitary-adrenal axis. Outside the hypothalamus, the medial amygdala also contains robust amounts of AVP. Contrary to the hypothalamic counterpart, the expression of extra-hypothalamic medial amygdala AVP is sexually dimorphic, in that it is preferentially transcribed in males in response to the continual presence of testosterone. Male gonadal hormones typically generate a negative feedback on the neuroendocrine stress axis. Here, we investigated whether testosterone-responsive medial amygdala AVP neurons provide negative feedback to hypothalamic AVP, thereby providing a feedback loop to suppress stress endocrine response during periods of high testosterone secretion. Contrary to our expectation, we found that AVP overexpression within the posterodorsal medial amygdala increased the recruitment of hypothalamic AVP neurons during stress, without affecting the total number of AVP neurons or the number of recently activated neurons following stress. These observations suggest that the effects of testosterone on extra-hypothalamic AVP facilitate stress responsiveness through permissive influence on the recruitment of hypothalamic AVP neurons.


Asunto(s)
Arginina Vasopresina/fisiología , Complejo Nuclear Corticomedial/fisiología , Neuronas/fisiología , Estrés Psicológico/fisiopatología , Animales , Retroalimentación Fisiológica/fisiología , Genes fos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacología , Sistema Hipotálamo-Hipofisario/fisiología , Ratones , Odorantes , Núcleo Hipotalámico Paraventricular/citología , Sistema Hipófiso-Suprarrenal/fisiología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Proteínas Recombinantes/metabolismo , Testosterona/fisiología
9.
Parasit Vectors ; 14(1): 77, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33494777

RESUMEN

Toxoplasma gondii is a protozoan parasite with a complex life cycle and a cosmopolitan host range. The asexual part of its life cycle can be perpetually sustained in a variety of intermediate hosts through a combination of carnivory and vertical transmission. However, T. gondii produces gametes only in felids after the predation of infected intermediate hosts. The parasite changes the behavior of its intermediate hosts by reducing their innate fear to cat odors and thereby plausibly increasing the probability that the definitive host will devour the infected host. Here, we provide a short description of such parasitic behavioral manipulation in laboratory rodents infected with T. gondii, along with a bird's eye view of underpinning biological changes in the host. We also summarize critical gaps and opportunities for future research in this exciting research area with broad implications in the transdisciplinary study of host-parasite relationships.


Asunto(s)
Conducta Animal , Interacciones Huésped-Parásitos , Roedores/parasitología , Toxoplasma , Animales , Gatos , Miedo , Humanos , Estadios del Ciclo de Vida , Odorantes , Roedores/fisiología , Toxoplasma/parasitología , Toxoplasma/patogenicidad , Toxoplasmosis Animal/parasitología , Toxoplasmosis Animal/fisiopatología
10.
Brain Behav Immun Health ; 8: 100128, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34589880

RESUMEN

Neurotoxoplasmosis, also known as cerebral toxoplasmosis, is an opportunistic chronic infection caused by the persistence of parasite Toxoplasma gondii cysts in the brain. In wild animals, chronic infection is associated with behavioral manipulation evident by an altered risk perception towards predators. In humans, reactivation of cysts and conversion of quiescent parasites into highly invasive tachyzoites is a significant cause of mortality in immunocompromised patients. However, the current standard therapy for toxoplasmosis is not well tolerated and is ineffective against the parasite cysts. In recent years, the concept of dietary supplementation with natural products derived from plants has gained popularity as a natural remedy for brain disorders. Notably, urolithin-A, a metabolite produced in the gut following consumption of ellagitannins-enriched food such as pomegranate, is reported to be blood-brain barrier permeable and exhibits neuroprotective effects in-vivo. In this study, we investigated the potential of pomegranate extract and urolithin-A as anti-neurotoxoplasmosis agents in-vitro and in-vivo. Treatment with pomegranate extract and urolithin-A reduced the parasite tachyzoite load and interfered with cyst development in differentiated human neural culture. Administration of urolithin-A also resulted in the formation of smaller brain cysts in chronically infected mice. Interestingly, this phenomenon was mirrored by an enhanced risk perception of the UA-treated infected mice towards predatory cues. Together, our findings demonstrate the potential of dietary supplementation with urolithin-A-enriched food as a novel natural remedy for the treatment of acute and chronic neurotoxoplasmosis.

11.
Front Behav Neurosci ; 13: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863290

RESUMEN

Testosterone reduces anxiety-like behaviors in rodents and increases exploration of anxiogenic parts of the environment. Effects of testosterone on innate defensive behaviors remain understudied. Here, we demonstrate that exogenous testosterone reduces aversion to cat odor in male mice. This is reflected as increased exploration of area containing cat urine when castrated male mice are supplied with exogenous testosterone. We also report that exogenous testosterone leads to DNA hypomethylation of arginine vasopressin (AVP) promoter in posterodorsal medial amygdala (MePD) and medial bed nucleus of stria terminalis (BNST). Our observations suggest that testosterone acting on AVP system within extended medial amygdala might regulate defensive behaviors in mice.

12.
Biotechnol J ; 11(3): 399-414, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26471004

RESUMEN

Removal of core fucose from N-glycans attached to human IgG1 significantly enhances its affinity for the receptor FcγRIII and thereby dramatically improves its antibody-dependent cellular cytotoxicity activity. While previous works have shown that inactivation of fucosyltransferase 8 results in mutants capable of producing fucose-free antibodies, we report here the use of genome editing techniques, namely ZFNs, TALENs and the CRISPR-Cas9, to inactivate the GDP-fucose transporter (SLC35C1) in Chinese hamster ovary (CHO) cells. A FACS approach coupled with a fucose-specific lectin was developed to rapidly isolate SLC35C1-deficient cells. Mass spectrometry analysis showed that both EPO-Fc produced in mutants arising from CHO-K1 and anti-Her2 antibody produced in mutants arising from a pre-existing antibody-producing CHO-HER line lacked core fucose. Lack of functional SLC35C1 in these cells does not affect cell growth or antibody productivity. Our data demonstrate that inactivating Slc35c1 gene represents an alternative approach to generate CHO cells for production of fucose-free antibodies.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Eritropoyetina/genética , Fucosa/química , Silenciador del Gen , Proteínas de Transporte de Monosacáridos/genética , Receptores de IgG/genética , Animales , Células CHO , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Eritropoyetina/metabolismo , Citometría de Flujo , Humanos , Mutación , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA