RESUMEN
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Asunto(s)
Enfermedad de Alzheimer , Descubrimiento de Drogas , Animales , Humanos , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Benzopiranos/química , Benzopiranos/farmacología , Benzopiranos/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Acridinas/síntesis química , Acridinas/química , Acridinas/farmacologíaRESUMEN
Approved mAbs that block the protein-protein interaction (PPI) interface of the PD-1/PD-L1 immune checkpoint axis have led to significant improvements in cancer treatment. Despite having drawbacks of mAbs only few a compounds are reported till date against this axis. Inhibiting PPIs using small molecules has emerged as a significant therapeutic opportunity, demanding for the identification of drug-like molecules at an accelerated pace under the hit-to-lead campaigns. Due to the PD-L1's cross-talk with PD-1/CD80 and its overexpression on cancer cells, as well as the availability of its crystal structures with small molecules, it is an enticing therapeutic target for structure-assisted small molecule design. Furthermore, the selection of chemical databases enriched with focused designing for PPI interfaces is crucial. Therefore, in this study we have utilized the Asinex signature library for structure-assisted virtual screening to find the potential PD-L1 inhibitors by targeting the cryptic PD-L1 interface, followed by induced fit docking for pose refinements in the pocket. The obtained hits were then subjected to interaction fingerprinting and ligand-based drug-likeness investigations in order to evaluate and analyze their drug-like qualities (ADME). Twelve compounds qualified for molecular dynamics simulations, followed by thermodynamic calculations for evaluation of their stability and energetics inside the pocket. Two novel compounds with different chemical moieties have been identified that are consistent throughout the simulation, mimicking the interactions and binding energies with BMS-1166. These compounds appear as potential therapeutic candidates to be explored experimentally, thereby paving the way for the development of novel leads as immunomodulators.
Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Inhibidores de Puntos de Control Inmunológico/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Secuencia de Aminoácidos , Antígeno B7-H1/química , Sitios de Unión , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , TermodinámicaRESUMEN
The dynamics and plasticity of the PD-1/PD-L1 axis are the bottlenecks for the discovery of small-molecule antagonists to perturb this interaction interface significantly. Understanding the process of this protein-protein interaction (PPI) is of fundamental biological interest in structure-based drug designing. Food and Drug Administration (FDA)-approved anti-PD-1 monoclonal antibodies (mAbs) are the first-in-class with distinct binding modes to access this axis clinically; however, their mechanistic aspects remain elusive. Here, we have unveiled the interactive interfaces with PD-L1 and mAbs to investigate the native plasticity of PD-1 at global (structural and dynamical) and local (residue side-chain orientations) levels. We found that the structural stability and coordinated Cα movements are increased in the presence of PD-1's binding partners. The rigorous analysis of these PPIs using computational biophysical approaches revealed PD-1's intrinsic plasticity, its concerted loops' movement (BC, FG, and CC'), distal side-chain motions, and the thermodynamic landscape, which are perturbed remarkably from its unbound to bound states. Based on intra-/inter-residues' contact networks and energetics, the hot-spots have been identified that were found to be essential to arrest the dynamical motions of PD-1 significantly for the rational design of therapeutic agents by mimicking the mAbs mechanism.
Asunto(s)
Receptor de Muerte Celular Programada 1 , Modelos Moleculares , Unión Proteica , Conformación ProteicaRESUMEN
Rheumatoid arthritis (RA) is a complex chronic inflammatory illness that affects the entire physiology of human body. It has become one of the top causes of disability worldwide. The development and progression of RA involves a complex interplay between an individual's genetic background and various environmental factors. In order to effectively manage RA, a multidisciplinary approach is required, as this disease is complicated and its pathophysiological mechanism is not fully understood yet. In majority of arthritis patients, the presence of abnormal B cells and autoantibodies, primarily anti-citrullinated peptide antibodies and rheumatoid factor affects the progression of RA. Therefore, drugs targeting B cells have now become a hot topic in the treatment of RA which is quite evident from the recent trends seen in the discovery of various B cell receptors (BCRs) targeting agents. Bruton's tyrosine kinase (BTK) is one of these recent targets which play a role in the upstream phase of BCR signalling. BTK is an important enzyme that regulates the survival, proliferation, activation and differentiation of B-lineage cells by preventing BCR activation, FC-receptor signalling and osteoclast development. Several BTK inhibitors have been found to be effective against RA during the in vitro and in vivo studies conducted using diverse animal models. This review focuses on BTK inhibition mechanism and its possible impact on immune-mediated disease, along with the types of RA currently being investigated, preclinical and clinical studies and future prospective.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Artritis Reumatoide , Inhibidores de Proteínas Quinasas , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Humanos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Animales , Linfocitos B/metabolismo , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
The Wnt/ß-Catenin pathway (Wnt/ß-CatP) is implicated in accelerating carcinogenesis and cancer progression, contributing to increased morbidity and treatment resistance. Even though it holds promise as a focus for cancer treatment, its intricate nature and diverse physiological effects pose significant challenges. Recent years have witnessed significant advancements in this domain, with numerous natural products demonstrating promising preclinical anti-tumor effects and identified as inhibitors of the Wnt/ß-CatP through various upstream and downstream mechanisms. This study provides a comprehensive overview of the current landscape of Wnt/ß-Cat-targeted cancer therapy, examining the impact of natural products on Wnt/ß-Cat signaling in both cancer prevention and therapeutic contexts. A comprehensive search was conducted on scientific databases like SciFinder, PubMed, and Google Scholar to retrieve relevant literature on Wnt-signaling, natural products, ß-Catenin (ß-Cat), and cancer from 2020 to January 2024. As per the analysis of the relevant reference within the specified period, it has been noted that a total of 58 phytoconstituents, predominantly phenolics, followed by triterpenoids and several other classes, along with a limited number of plant extracts, have exhibited activity targeting the Wnt/ß-CatP. Most ß-Cat regulating modulators restrict cancer cell development by suppressing ß-Cat expression, facilitating proteasomal degradation, and inhibiting nuclear translocation. Multiple approaches have been devised to block the activity of ß-Cat in cancer therapy, a key factor in cancer progression, leading to the discovery of various Wnt/ß-CatP regulators. However, their exploration remains limited, necessitating further research using clinical models for potential clinical use in cancer prevention and therapeutics.
Asunto(s)
Productos Biológicos , Neoplasias , Vía de Señalización Wnt , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Neoplasias/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , AnimalesRESUMEN
The PD-1/PD-L1 interaction is a promising target for small molecule inhibitors in cancer immunotherapy, but targeting this interface has been challenging. While efforts have been made to identify compounds that target the orthosteric sites, no reports have explored the potential of small molecules to target the allosteric region of PD-1. Therefore, our study aims to establish a pipeline to identify small molecules that can effectively bind to either the orthosteric or allosteric pockets of PD-1. We categorized the PD-1 interface into two hot-spot zones (P-and N-zones) based on extensive analysis of its structural, dynamical, and energetic properties. These zones correspond to the orthosteric and allosteric PPI sites, respectively, targeted by monoclonal antibodies. We used a guided virtual screening workflow to identify hits from â¼7 million compounds library, which were then clustered based on structural similarity and assessed by interaction fingerprinting. The selective and diverse chemical representatives were subjected to MD simulations and binding energetics calculations to filter out false positives and identify actual binders. Binding poses metadynamics calculations confirmed the stability of the final hits in the pocket. This study emphasizes the need for an integrated pipeline that uses molecular dynamics simulations and binding energetics to identify potential binders for the dynamic PD-1/PD-L1 interface, due to the lack of small molecule co-crystals. Only a few potential binders were discovered from a large pool of molecules targeting both the allosteric and orthosteric zones. Our results suggest that the allosteric site has more potential than the orthosteric site for inhibitor design. The identified "computational hits" hold potential as starting points for in vitro evaluations followed by hit-to-lead optimization. Overall, this study represents an effort to establish a computational pipeline for exploring and enriching both the allosteric and orthosteric sites of PPI interfaces, "a tough but indispensable nut to crack".
Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Sitio Alostérico , Simulación de Dinámica Molecular , Ligandos , Sitios de Unión , Regulación AlostéricaRESUMEN
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Asunto(s)
Neoplasias , Sirolimus , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/tratamiento farmacológicoRESUMEN
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
RESUMEN
Cinnoline or Benzo-pyridazine has its place in the family of fairly well-known benzfuseddiazine heterocycles. Because of its natural occurrence and synthetic exploration, cinnoline compounds validated its thought-provoking bioactivity through a number of research publications and patents during last few decades. A creative consideration has been rewarded to the synthesis of cinnoline based heterocyclic compounds, mostly due to their wide range of diverse pharmacological activities. The present review covers the principle approaches to the synthesis of cinnoline nucleus and almost all biological properties of 115 cinnoline derivatives reported during the last 65 years from natural and synthetic origin with 140 references.
Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Compuestos Heterocíclicos con 2 Anillos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Compuestos Heterocíclicos con 2 Anillos/química , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura MolecularRESUMEN
In the Central Nervous System (CNS), a specific loss of focal neurons leads to mental and neurological disorders like dementia, Alzheimer's Disease (AD), Huntington's disease, Parkinson's disease, etc. AD is a neurological degenerative disorder, which is progressive and irreversible in nature and is the widely recognized reason for dementia in the geriatric populace. It affects 10% of people above the age of 65 and is the fourth driving reason for death in the United States. Numerous evidence suggests that the neuronal compartment is not the only genesis of AD, but transcription factors also hold significant importance in the occurrence and advancement of the disease. It is the need of the time to find the novel molecular targets and new techniques for treating or slowing down the progression of neurological disorders, especially AD. In this article, we summarised a conceivable association between transcriptional factors and their defensive measures against neurodegeneration and AD. The mammalian forkhead transcription factors of the class O (FoxO) illustrate one of the potential objectives for the development of new methodologies against AD and other neurocognitive disorders. The presence of FoxO is easily noticeable in the "cognitive centers" of the brain, specifically in the amygdala, hippocampus, and the nucleus accumbens. FoxO proteins are the prominent and necessary factors in memory formation and cognitive functions. FoxO also assumes a pertinent role in the protection of multiple cells in the brain by controlling the involving mechanism of autophagy and apoptosis and also modulates the process of phosphorylation of the targeted protein, thus FoxO must be a putative target in the mitigation of AD. This review features the role of FoxO as an important biomarker and potential new targets for the treatment of AD.