Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 33(8): 2033-2040, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28165751

RESUMEN

Understanding the molecular interactions between small molecules and double-stranded DNA has important implications on the design and development of DNA and DNA-protein nanomaterials. Such materials can be assembled into a vast array of 1-, 2-, and 3D structures that contain a range of chemical and physical features where small molecules can bind via intercalation, groove binding, and electrostatics. In this work, we use a series of simulation-guided binding assays and spectroscopy techniques to investigate the binding of selected organophosphtates, methyl parathion, paraoxon, their common enzyme hydrolysis product p-nitrophenol, and double-stranded DNA fragments and DNA DX tiles, a basic building block of DNA-based materials. Docking simulations suggested that the binding strength of each compound was DNA sequence-dependent, with dissociation constants in the micromolar range. Microscale thermophoresis and fluorescence binding assays confirmed sequence-dependent binding and that paraoxon bound to DNA with Kd's between ∼10 and 300 µM, while methyl parathion bound with Kd's between ∼10 and 100 µM. p-Nitrophenol also bound to DNA but with affinities up to 650 µM. Changes in biding affinity were due to changes in binding mode as revealed by circular dichroism spectroscopy. Based on these results, two DNA DX tiles were constructed and analyzed, revealing tighter binding to the studied compounds. Taken together, the results presented here add to our fundamental understanding of the molecular interactions of these compounds with biological materials and opens new possibilities in DNA-based sensors, DNA-based matrices for organophosphate extraction, and enzyme-DNA technologies for organophosphate hydrolysis.


Asunto(s)
ADN/química , Nanoestructuras/química , Organofosfatos/química , Dicroismo Circular , Paraoxon/química
2.
Chembiochem ; 17(15): 1430-6, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27173175

RESUMEN

Understanding and controlling the molecular interactions between enzyme substrates and DNA nanostructures has important implications in the advancement of enzyme-DNA technologies as solutions in biocatalysis. Such hybrid nanostructures can be used to create enzyme systems with enhanced catalysis by controlling the local chemical and physical environments and the spatial organization of enzymes. Here we have used molecular simulations with corresponding experiments to describe a mechanism of enhanced catalysis due to locally increased substrate concentrations. With a series of DNA nanostructures conjugated to horseradish peroxidase, we show that binding interactions between substrates and the DNA structures can increase local substrate concentrations. Increased local substrate concentrations in HRP(DNA) nanostructures resulted in 2.9- and 2.4-fold decreases in the apparent Michaelis constants of tetramethylbenzidine and 4-aminophenol, substrates of HRP with tunable binding interactions to DNA nanostructures with dissociation constants in the micromolar range. Molecular simulations and kinetic analysis also revealed that increased local substrate concentrations enhanced the rates of substrate association. Identification of the mechanism of increased local concentration of substrates in close proximity to enzymes and their active sites adds to our understanding of nanostructured biocatalysis from which we can develop guidelines for enhancing catalysis in rationally designed systems.


Asunto(s)
Biocatálisis , Biotecnología/métodos , ADN/metabolismo , Enzimas/metabolismo , Modelos Químicos , Nanoestructuras/química , Bencidinas/metabolismo , Dominio Catalítico , Peroxidasa de Rábano Silvestre/metabolismo , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA