Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Anal Bioanal Chem ; 407(16): 4555-65, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25869483

RESUMEN

The detection and localization of polymer-based nanoparticles in human bone marrow-derived stromal cells (hBMSC) by time-of-flight secondary ion mass spectrometry (ToF-SIMS) is reported as an example for the mass spectrometry imaging of organic nanoparticles in cell environments. Polyelectrolyte complex (PEC) nanoparticles (NP) made of polyethylenimine (PEI) and cellulose sulfate (CS), which were developed as potential drug carrier and coatings for implant materials, were chosen for the imaging experiments. To investigate whether the PEI/CS-NP were taken up by the hBMSC ToF-SIMS measurements on cross sections of the cells and depth profiling of whole, single cells were carried out. Since the mass spectra of the PEI/CS nanoparticles are close to the mass spectra of the cells principal component analysis (PCA) was performed to get specific masses of the PEI/CS-NP. Mass fragments originating from the NP compounds especially from cellulose sulfate could be used to unequivocally detect and image the PEI/CS-NP inside the hBMSC. The findings were confirmed by light and transmission electron microscopy. Graphical Abstract During ToF-SIMS analysis Bi3 (+) primary ions hit the sample surface and so called secondary ions (SI) are emitted and detected in the mass analyser. Exemplary mass images of cross sections of human mesenchymal stromal cells (red; m/z = 86.1 u) cultured with organic nanoparticles (green; m/z = 143.0 u) were obtained.


Asunto(s)
Células Madre Mesenquimatosas/química , Nanopartículas/análisis , Compuestos Orgánicos/análisis , Células Cultivadas , Humanos , Microscopía Electrónica de Transmisión , Análisis de Componente Principal , Espectrometría de Masa de Ion Secundario
2.
ACS Appl Mater Interfaces ; 15(50): 57950-57959, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37676903

RESUMEN

Climate change requires enhanced autonomous temperature monitoring during logistics/transport. A cheap approach comprises the use of temperature-sensitive copolymers that undergo temperature-induced irreversible coagulation. The synthesis/characterization of pentablock copolymers (PBCP) starting from poloxamer PEO130-b-PPO44-b-PEO130 (poly(ethylene oxide)130-b-poly(propylene oxide)44-b-poly(ethylene oxide)130) and adding two terminal qPDMAEMA85 (quaternized poly[(2-dimethylamino)ethyl methacrylate]85) blocks is presented. Mixing of PBCP solutions with hexacyanoferrate(III)/ferricyanide solutions leads to a reduction of the decane/water interfacial tension accompanied by a co/self-assembly toward flower-like micelles in cold water because of the formation of an insoluble/hydrophobic qPDMAEMA/ferricyanide complex. In cold water, the PEO/PPO blocks provide colloidal stability over months. In hot water, the temperature-responsive PPO block is dehydrated, leading to a pronounced temperature dependence of the oil-water interfacial tension. In solution, the sticky PPO segments exposed at the micellar corona cause a colloidal clustering above a certain threshold temperature, which follows Smoluchowski-type kinetics. This coagulation remains for months even after cooling, indicating the presence of a kinetically trapped nonequilibrium state for at least one of the observed micellar structures. Therefore, the system memorizes a previous suffering of heat. This phenomenon is linked to an exchange of qPDMAEMA-blocks bridging the micellar cores after PPO-induced clustering. The addition of ferrous ions hampers the exchange, leading to the reversible coagulation of Prussian blue loaded micelles. Hence, the Fe2+ addition causes a shift from history monitoring to the sensing of the present temperature. Presumably, the system can be adapted for different temperatures in order to monitor transport and storage in a simple way. Hence, these polymeric "flowers" could contribute to preventing waste and sustaining the quality of goods (e.g., food) by temperature-induced bouquet formation, where an irreversible exchange of "tentacles" between the flowers stabilizes the bouquet at other temperatures as well.

3.
Curr Pharm Des ; 24(13): 1341-1348, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29237375

RESUMEN

BACKGROUND: In this contribution an overview is given on own work concerning drug loaded Polyelectrolyte Complex (PEC) Nanoparticles (NP) used to functionalize Bone Substitute Materials (BSM) for the therapy of bone defects associated with systemic bone diseases. In this context, drug loaded PEC NP have certain advantages, which are exemplarily summarized herein. METHODS: Concerning preparative methods PEC NP were fabricated by controlled mixing of polycation and polyanion solutions and integration of charged drugs during and after mixing. Control was taken on the stoichiometric ratio related to cationic and anionic repeating units, which was chosen close to zero for the final applied PEC NP. Concerning analytical methods a couple of physical-chemical methods were applied like colloid titration, Dynamic Light Scattering (DLS), Scanning Force Microscopy (SFM), Fourier Transform infrared (FTIR) spectroscopy, Ultraviolet-Visible (UV-VIS) and Circular Dichroism (CD) spectroscopy to characterize colloid stability, adhesiveness, drug loading and release of PEC NP. Moreover, standard biochemical and microbiological assays were applied. CONCLUSION: Drug loaded PEC NP consist of oppositely charged biorelated Polyelectrolytes (PEL) like ionic polysaccharides or ionic polypeptides and also synthetic PEL, which are mixed and processed in aqueous media. At first, freshly prepared drug/PEC NP exhibit time dependent colloidal stability in the range of weeks and months, which enables and simplifies storage, transport and application in the medical field. Secondly, after deposition and drying of drug/PEC NP a local wet adhesive PEC matrix at the BSM remains in contact to relevant aqueous media (e.g. buffer, cell culture medium), which minimizes asepsis, systemic toxicity, immune or inflammatory reaction. Thirdly, cell compatible PEC NP coatings were identified, which showed only minimal effects on various relevant bone related cells due to biorelateness, complexation, local confinement and low surface area. Fourthly, PEC NP elute drugs for bone healing like bisphosphonates, antibiotics and growth factors (e.g. bone morphogenetic proteins) in delayed and sustained manner. Moreover, the onset of elution could be triggered by thermoresponsive PEL via temperature increase giving clinicians a tool into hand allowing spatiotemporal drug release on demand. Finally, drug/PEC NP could be integrated into commercial or still developed allotropic stabilizing or defect filling BSM systems.


Asunto(s)
Adhesivos , Enfermedades Óseas/tratamiento farmacológico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polielectrolitos/química , Animales , Humanos
4.
Nanomaterials (Basel) ; 8(6)2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29882877

RESUMEN

Angiogenesis plays an important role in both soft and hard tissue regeneration, which can be modulated by therapeutic drugs. If nanoparticles (NP) are used as vectors for drug delivery, they have to encounter endothelial cells (EC) lining the vascular lumen, if applied intravenously. Herein the interaction of unloaded polyelectrolyte complex nanoparticles (PECNP) composed of cationic poly(l-lysine) (PLL) and various anionic polysaccharides with human vascular endothelial cells (HUVEC) was analyzed. In particular PECNP were tested for their cell adhesive properties, their cellular uptake and intracellular localization considering composition and net charge. PECNP may form a platform for both cell coating and drug delivery. PECNP, composed of PLL in combination with the polysaccharides dextran sulfate (DS), cellulose sulfate (CS) or heparin (HEP), either unlabeled or labeled with fluorescein isothiocyanate (FITC) and either with positive or negative net charge were prepared. PECNP were applied to human umbilical cord vein endothelial cells (HUVEC) in both, the volume phase and immobilized phase at model substrates like tissue culture dishes. The attachment of PECNP to the cell surface, their intracellular uptake, and effects on cell proliferation and growth behavior were determined. Immobilized PECNP reduced attachment of HUVEC, most prominently the systems PLL/HEP and PLL/DS. A small percentage of immobilized PECNP was taken up by cells during adhesion. PECNP in the volume phase showed no effect of the net charge sign and only minor effects of the composition on the binding and uptake of PECNP at HUVEC. PECNP were stored in endosomal vesicles in a cumulative manner without apparent further processing. During mitosis, internalized PECNP were almost equally distributed among the dividing cells. Both, in the volume phase and immobilized at the surface, PECNP composed of PLL/HEP and PLL/DS clearly reduced cell proliferation of HUVEC, however without an apparent cytotoxic effect, while PLL/CS composition showed minor impairment. PECNP have an anti-adhesive effect on HUVEC and are taken up by endothelial cells which may negatively influence the proliferation rate of HUVEC. The negative effects were less obvious with the composition PLL/CS. Since uptake and binding for PLL/HEP was more efficient than for PLL/DS, PECNP of PLL/HEP may be used to deliver growth factors to endothelial cells during vascularization of bone reconstitution material, whereas those of PLL/CS may have an advantage for substituting biomimetic bone scaffold material.

5.
Biointerphases ; 10(1): 011001, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25708630

RESUMEN

Herein, the authors report and review polyelectrolyte complex (PEC) nanoparticles (NPs) loaded with zoledronate (ZOL) and simvastatin and their effects on bone cells. PEC NPs are intended for modification of bone substitute materials. For characterization, they can be solution casted on germanium (Ge) substrates serving as analytically accessible model substrate. PEC NPs were generated by mixing poly(ethyleneimine) (PEI) either with linear cellulose sulfate (CS) or with branched dextransulfate (DS). Four important requirements for drug loaded PEC NPs and their films are addressed herein, which are the colloidal stability of PEC dispersions (1), interfacial stability (2), cytocompatibility (3), and retarded drug release (4). Dynamic light scattering measurements (DLS) showed that both PEI/CS and PEI/DS PEC NP were obtained with hydrodynamic radii in the range of 35-170 nm and were colloidally stable up to several months. Transmission FTIR spectroscopy evidenced that films of both systems were stable in contact to the release medium up to several days. ZOL-loaded PEI/CS nanoparticles, which were immobilized on an osteoblast-derived extracellular matrix, reduced significantly the resorption and the metabolic activity of human monocyte-derived osteoclasts. FTIR spectroscopy at cast PEC/drug films at Ge substrates revealed retarded drug releases in comparison to the pure drug films.


Asunto(s)
Adhesión Celular , Portadores de Fármacos , Sustancias Macromoleculares , Nanopartículas , Polietileneimina/metabolismo , Polisacáridos/metabolismo , Humanos , Osteoclastos/citología , Osteoclastos/metabolismo
6.
Int J Nanomedicine ; 9: 2205-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24855357

RESUMEN

BACKGROUND: Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles' composition and surface net charge. MATERIALS AND METHODS: Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs' physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5-50 nmol·cm(-2)) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). RESULTS: PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC(+)NP) or negative (PEC(-)NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into "variant systems" featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and "invariant systems" lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC)-labeled PECNPs suggested internalization into hMSCs remaining stable for 8 days. CONCLUSION: Our study demonstrated that PECNP composition affects hMSC behavior. In particular, the PEI/CS system showed biocompatibility in a wide concentration range, representing a suitable system for local drug delivery from PECNP-functionalized bone substitute materials.


Asunto(s)
Electrólitos/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/administración & dosificación , Nanopartículas/ultraestructura , Polímeros/farmacología , Adsorción , Tamaño de la Célula/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/efectos de los fármacos , Tamaño de la Partícula , Electricidad Estática
7.
Biointerphases ; 8(1): 25, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24706138

RESUMEN

The bone therapeutic drug zoledronate (ZOL) was loaded at and released by polyelectrolyte complex (PEC) particle films composed of either pure poly(ethyleneimine) (PEI) or maltose-modified poly(ethyleneimine) (PEI-M) and oppositely charged cellulose sulfate attached to model germanium (Ge) substrates by solution casting. Dispersions of colloidally stable polyelectrolyte complex (PEC) particles in the size range 11-141 nm were obtained by mixing PEI or PEI-M, CS and ZOL in defined stoichiometric ratios. TRANS-FTIR spectroscopy was used to determine the stability of the PEC films against detachment, in-situ-ATR-FTIR spectroscopy for the ZOL loss in the PEC film and UV-VIS spectroscopy for the ZOL enrichment of the release medium. Films of casted ZOL/CS/PEI-M or ZOL/CS/PEI particles were stable in contact to water, while films of the pure drug (ZOL) and of the binary systems ZOL/PEI-M or ZOL/PEI were not stable against detachment. Retarded releases of ZOL from various PEC films compared to the pure drug film were observed. The molecular weight of PEI showed a considerable effect on the initial burst (IB) of ZOL. No significant effect of the maltose modification of PEI-25 K on IB could be found. Generally, after one day the ZOL release process was finished for all measured ZOL/PEC samples and residual amounts of 0-30% were obtained. Surface adhesive drug loaded PEC particles are promising drug delivery systems to supply and release a defined amount of bone therapeutics and to functionalize bone substitution materials.


Asunto(s)
Celulosa/análogos & derivados , Difosfonatos/química , Imidazoles/química , Maltosa/química , Polietileneimina/química , Polímeros/química , Celulosa/química , Ácido Zoledrónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA