Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Sci Technol ; 58(21): 9031-9039, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752553

RESUMEN

Contemporary resource management is doubly burdened by high rates of organic material disposal in landfills, generating potent greenhouse gases (GHG), and globally degraded soils, which threaten future food security. Expansion of composting can provide a resilient alternative, by avoiding landfill GHG emissions, returning valuable nutrients to the soil to ensure continued agricultural production, and sequestering carbon while supporting local communities. Recognizing this opportunity, California has set ambitious organics diversion targets in the Short-Lived Climate Pollutant Law (SB1383) which will require significant increases (5 to 8 million tonnes per year) in organic material processing capacity. This paper develops a spatial optimization model to consider how to handle this flow of additional material while achieving myriad social and ecological benefits through compost production. We consider community-based and on-farm facilities alongside centralized, large-scale infrastructure to explore decentralized and diversified alternative futures of composting infrastructure in the state of California. We find using a diversity of facilities would provide opportunity for cost savings while achieving significant emissions reductions of approximately 3.4 ± 1 MMT CO2e and demonstrate that it is possible to incorporate community protection into compost infrastructure planning while meeting economic and environmental objectives.


Asunto(s)
Suelo , California , Compostaje , Gases de Efecto Invernadero , Conservación de los Recursos Naturales , Agricultura
3.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33913236

RESUMEN

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Asunto(s)
Dióxido de Carbono , Ecosistema , Carbono , Dióxido de Carbono/análisis , Reproducibilidad de los Resultados , Estaciones del Año , Suelo , Tundra , Incertidumbre
4.
Glob Chang Biol ; 26(4): 1953-1961, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31838767

RESUMEN

Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant-centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be 'limited' by nutrients or carbon alone. Here, we outline how models aimed at predicting non-steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant-microbe interactions in coupled carbon and nutrient models.

5.
Glob Chang Biol ; 23(6): 2383-2395, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27976819

RESUMEN

Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.


Asunto(s)
Clima , Bosques , Árboles , Picea , Pinus
6.
Nature ; 478(7367): 49-56, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21979045

RESUMEN

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.


Asunto(s)
Ciclo del Carbono , Carbono/metabolismo , Ecosistema , Compuestos Orgánicos/análisis , Suelo/química , Bioingeniería , Carbón Orgánico/metabolismo , Cambio Climático , Congelación , Compuestos Orgánicos/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Microbiología del Suelo
7.
Proc Natl Acad Sci U S A ; 111(25): 9064-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927594

RESUMEN

Net photosynthesis is the largest single flux in the global carbon cycle, but controls over its variability are poorly understood because there is no direct way of measuring it at the ecosystem scale. We report observations of ecosystem carbonyl sulfide (COS) and CO2 fluxes that resolve key gaps in an emerging framework for using concurrent COS and CO2 measurements to quantify terrestrial gross primary productivity. At a wheat field in Oklahoma we found that in the peak growing season the flux-weighted leaf relative uptake of COS and CO2 during photosynthesis was 1.3, at the lower end of values from laboratory studies, and varied systematically with light. Due to nocturnal stomatal conductance, COS uptake by vegetation continued at night, contributing a large fraction (29%) of daily net ecosystem COS fluxes. In comparison, the contribution of soil fluxes was small (1-6%) during the peak growing season. Upland soils are usually considered sinks of COS. In contrast, the well-aerated soil at the site switched from COS uptake to emissions at a soil temperature of around 15 °C. We observed COS production from the roots of wheat and other species and COS uptake by root-free soil up to a soil temperature of around 25 °C. Our dataset demonstrates that vegetation uptake is the dominant ecosystem COS flux in the peak growing season, providing support of COS as an independent tracer of terrestrial photosynthesis. However, the observation that ecosystems may become a COS source at high temperature needs to be considered in global modeling studies.


Asunto(s)
Ecosistema , Modelos Biológicos , Raíces de Plantas/metabolismo , Óxidos de Azufre/metabolismo , Triticum/metabolismo , Oklahoma , Raíces de Plantas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
8.
Glob Chang Biol ; 22(10): 3487-502, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26990225

RESUMEN

Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.


Asunto(s)
Cambio Climático , Metano , Regiones Árticas , Suelo , Tundra
9.
Plant Physiol ; 166(4): 2051-64, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25318937

RESUMEN

The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.


Asunto(s)
Butadienos/metabolismo , Carbono/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Terpenos/metabolismo , Árboles/fisiología , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Ambiente , Calor , Luz , Fotosíntesis , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Temperatura , Árboles/efectos de la radiación
10.
Glob Chang Biol ; 21(3): 1358-67, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25358112

RESUMEN

While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type ((13) C/(15) N-labeled needles vs. fine roots) and placement-depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement-depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root-derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle-derived C and N was transferred into stable SOM fractions. The stoichiometry of litter-derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N-rich compounds for long-term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates.


Asunto(s)
Carbono/metabolismo , Bosques , Nitrógeno/metabolismo , Pinus/química , Suelo/química , California , Hojas de la Planta/química , Raíces de Plantas/química , Análisis de Regresión , Estaciones del Año
11.
Glob Chang Biol ; 21(12): 4298-302, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26182905

RESUMEN

Many studies have shown that elevated atmospheric CO2 concentrations result in increased plant carbon inputs to soil that can accelerate the decomposition of native soil organic matter, an effect known as priming. Consequently, it is important to understand and quantify the priming effect for future predictions of carbon-climate feedbacks. There are potential pitfalls, however, when representing this complex system with a simple, first-order model. Here, we show that a multi-pool soil carbon model can match the change in bulk turnover time calculated from overall respiration and carbon stocks (a one-pool approach) at elevated CO2 , without a change in decomposition rate constants of individual pools (i.e., without priming). Therefore, the priming effect cannot be quantified using a one-pool model alone, and even a two-pool model may be inadequate, depending on the effect size as well as the distribution of soil organic carbon and turnover times. In addition to standard measurements of carbon stocks and CO2 fluxes, we argue that quantifying the fate of new plant inputs requires isotopic tracers and microbial measurements. Our results offer insights into modeling and interpreting priming from observations.


Asunto(s)
Atmósfera/química , Ciclo del Carbono , Dióxido de Carbono/química , Modelos Teóricos , Suelo/química , Cambio Climático
12.
Ecol Appl ; 25(1): 99-115, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26255360

RESUMEN

The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest, and grassland/crops) to derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated with greenness derived from camera imagery in all three plant functional types. Specifically, the beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the end of the photosynthetic period in grassland/crops were both correlated with changes in greenness; changes in redness were correlated with the end of the photosynthetic period in deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or ending of the photosynthetic period using camera greenness in evergreen needleleaf forest. At deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly correlated up to 60 days after the mean onset date for the start of spring. More generally, results from this work demonstrate that digital repeat photography can be used to quantify both the duration of the photosynthetically active period as well as total GPP in deciduous broadleaf forest and grassland/crops, but that new and different approaches are required before comparable results can be achieved in evergreen needleleaf forest.


Asunto(s)
Bosques , Fotograbar/instrumentación , Fotograbar/métodos , Fotosíntesis/fisiología , Plantas/metabolismo , Estaciones del Año , Pigmentos Biológicos , Plantas/clasificación , Factores de Tiempo
13.
Environ Sci Technol ; 49(4): 2013-21, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25541644

RESUMEN

The land-use implications of deep decarbonization of the electricity sector (e.g., 80% below 1990 emissions) have not been well-characterized quantitatively or spatially. We assessed the operational-phase land-use requirements of different low-carbon scenarios for California in 2050 and found that most scenarios have comparable direct land footprints. While the per MWh footprint of renewable energy (RE) generation is initially higher, that of fossil and nuclear generation increases over time with continued fuel use. We built a spatially explicit model to understand the interactions between resource quality and environmental constraints in a high RE scenario (>70% of total generation). We found that there is sufficient land within California to meet the solar and geothermal targets, but areas with the highest quality wind and solar resources also tend to be those with high conservation value. Development of some land with lower conservation value results in lower average capacity factors, but also provides opportunity for colocation of different generation technologies, which could significantly improve land-use efficiency and reduce permitting, leasing, and transmission infrastructure costs. Basing siting decisions on environmentally-constrained long-term RE build-out requirements produces significantly different results, including better conservation outcomes, than implied by the current piecemeal approach to planning.


Asunto(s)
Conservación de los Recursos Energéticos/economía , Conservación de los Recursos Energéticos/métodos , Política Ambiental/economía , Energía Renovable/estadística & datos numéricos , California , Carbono/análisis , Conservación de los Recursos Naturales , Electricidad , Ambiente , Energía Geotérmica , Viento
14.
Proc Natl Acad Sci U S A ; 109(26): E1753-61, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22689999

RESUMEN

Global climate carbon-cycle models predict acceleration of soil organic carbon losses to the atmosphere with warming, but the size of this feedback is poorly known. The temperature sensitivity of soil carbon decomposition is commonly determined by measuring changes in the rate of carbon dioxide (CO(2)) production under controlled laboratory conditions. We added measurements of carbon isotopes in respired CO(2) to constrain the age of carbon substrates contributing to the temperature response of decomposition for surface soils from two temperate forest sites with very different overall rates of carbon cycling. Roughly one-third of the carbon respired at any temperature was fixed from the atmosphere more than 10 y ago, and the mean age of respired carbon reflected a mixture of substrates of varying ages. Consistent with global ecosystem model predictions, the temperature sensitivity of the carbon fixed more than a decade ago was the same as the temperature sensitivity for carbon fixed less than 10 y ago. However, we also observed an overall increase in the mean age of carbon respired at higher temperatures, even correcting for potential substrate limitation effects. The combination of several age constraints from carbon isotopes showed that warming had a similar effect on respiration of decades-old and younger (<10 y) carbon but a greater effect on decomposition of substrates of intermediate (between 7 and 13 y) age. Our results highlight the vulnerability of soil carbon to warming that is years-to-decades old, which makes up a large fraction of total soil carbon in forest soils globally.

15.
Glob Chang Biol ; 20(5): 1629-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25544969

RESUMEN

Pyrogenic organic matter (PyOM) decomposes on centennial timescale in soils, but the processes regulating its decay are poorly understood. We conducted one of the first studies of PyOM and wood decomposition in a temperate forest using isotopically labeled organic substrate, and quantified microbial incorporation and physico-chemical transformations of PyOM in situ. Stable-isotope (¹³C and ¹5N) enriched PyOM and its precursor wood were added to the soil at 2 cm depth at ambient (N0) and increased (N+) levels of nitrogen fertilization. The carbon (C) and nitrogen (N) of added PyOM or wood were tracked through soil to 15 cm depth, in physically separated soil density fractions and in benzene polycarboxylic acids (BPCA) molecular markers. After 10 months in situ, more PyOM-derived C (>99% of initial 13C-PyOM) and N (90% of initial ¹5N-PyOM) was recovered than wood derived C (48% of 13C-wood) and N(89% under N0 and 48% under N+). PyOM-C and wood-C migrated at the rate of 126 mm yr ⁻¹ with 3-4% of PyOMC and 4-8% of wood-C recovered below the application depth. Most PyOM C was recovered in the free light fraction(fLF) (74%), with 20% in aggregate-occluded and 6% in mineral associated fractions ­ fractions that typically have much slower turnover times. In contrast, wood C was recovered mainly in occluded (33%) or dense fraction (27%).PyOM addition induced loss of native C from soil (priming effect), particularly in fLF (13%). The total BPCA-C content did not change but after 10 months the degree of aromatic condensation of PyOM decreased, as determined by relative contribution of benzene hexa-carboxylic acid (B6CA) to the total BPCA C. Soil microbial biomass assimilated 6-10% of C from the wood, while PyOM contributions was negligible (0.14­0.18%). The addition of N had no effect on the dynamics of PyOM while limited effect on wood.


Asunto(s)
Bosques , Suelo/química , Madera/metabolismo , Isótopos de Carbono/análisis , Florida , Sustancias Húmicas/análisis , Isótopos de Nitrógeno/análisis , Microbiología del Suelo , Madera/análisis , Madera/química
16.
Nat Commun ; 15(1): 4489, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802385

RESUMEN

The sensitivity of soil organic carbon (SOC) decomposition in seasonally frozen soils, such as alpine ecosystems, to climate warming is a major uncertainty in global carbon cycling. Here we measure soil CO2 emission during four years (2018-2021) from the whole-soil warming experiment (4 °C for the top 1 m) in an alpine grassland ecosystem. We find that whole-soil warming stimulates total and SOC-derived CO2 efflux by 26% and 37%, respectively, but has a minor effect on root-derived CO2 efflux. Moreover, experimental warming only promotes total soil CO2 efflux by 7-8% on average in the meta-analysis across all grasslands or alpine grasslands globally (none of these experiments were whole-soil warming). We show that whole-soil warming has a much stronger effect on soil carbon emission in the alpine grassland ecosystem than what was reported in previous warming experiments, most of which only heat surface soils.

17.
Nat Geosci ; 16(4): 344-348, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064011

RESUMEN

Subsoils contain more than half of soil organic carbon (SOC) and are expected to experience rapid warming in the coming decades. Yet our understanding of the stability of this vast carbon pool under global warming is uncertain. In particular, the fate of complex molecular structures (polymers) remains debated. Here we show that 4.5 years of whole-soil warming (+4 °C) resulted in less polymeric SOC (sum of specific polymers contributing to SOC) in the warmed subsoil (20-90 cm) relative to control, with no detectable change in topsoil. Warming stimulated the subsoil loss of lignin phenols (-17 ± 0%) derived from woody plant biomass, hydrolysable lipids cutin and suberin, derived from leaf and woody plant biomass (-28 ± 3%), and pyrogenic carbon (-37 ± 8%) produced during incomplete combustion. Given that these compounds have been proposed for long-term carbon sequestration, it is notable that they were rapidly lost in warmed soils. We conclude that complex polymeric carbon in subsoil is vulnerable to decomposition and propose that molecular structure alone may not protect compounds from degradation under future warming.

18.
Biogeochemistry ; 165(1): 91-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637456

RESUMEN

Organo-mineral and organo-metal associations play an important role in the retention and accumulation of soil organic carbon (SOC). Recent studies have demonstrated a positive correlation between calcium (Ca) and SOC content in a range of soil types. However, most of these studies have focused on soils that contain calcium carbonate (pH > 6). To assess the importance of Ca-SOC associations in lower pH soils, we investigated their physical and chemical interaction in the grassland soils of Point Reyes National Seashore (CA, USA) at a range of spatial scales. Multivariate analyses of our bulk soil characterisation dataset showed a strong correlation between exchangeable Ca (CaExch; 5-8.3 c.molc kg-1) and SOC (0.6-4%) content. Additionally, linear combination fitting (LCF) of bulk Ca K-edge X-ray absorption near-edge structure (XANES) spectra revealed that Ca was predominantly associated with organic carbon across all samples. Scanning transmission X-ray microscopy near-edge X-ray absorption fine structure spectroscopy (STXM C/Ca NEXAFS) showed that Ca had a strong spatial correlation with C at the microscale. The STXM C NEXAFS K-edge spectra indicated that SOC had a higher abundance of aromatic/olefinic and phenolic C functional groups when associated with Ca, relative to C associated with Fe. In regions of high Ca-C association, the STXM C NEXAFS spectra were similar to the spectrum from lignin, with moderate changes in peak intensities and positions that are consistent with oxidative C transformation. Through this association, Ca thus seems to be preferentially associated with plant-like organic matter that has undergone some oxidative transformation, at depth in acidic grassland soils of California. Our study highlights the importance of Ca-SOC complexation in acidic grassland soils and provides a conceptual model of its contribution to SOC preservation, a research area that has previously been unexplored. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-023-01059-2.

19.
Sci Data ; 10(1): 614, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696825

RESUMEN

AmeriFlux is a network of research sites that measure carbon, water, and energy fluxes between ecosystems and the atmosphere using the eddy covariance technique to study a variety of Earth science questions. AmeriFlux's diversity of ecosystems, instruments, and data-processing routines create challenges for data standardization, quality assurance, and sharing across the network. To address these challenges, the AmeriFlux Management Project (AMP) designed and implemented the BASE data-processing pipeline. The pipeline begins with data uploaded by the site teams, followed by the AMP team's quality assurance and quality control (QA/QC), ingestion of site metadata, and publication of the BASE data product. The semi-automated pipeline enables us to keep pace with the rapid growth of the network. As of 2022, the AmeriFlux BASE data product contains 3,130 site years of data from 444 sites, with standardized units and variable names of more than 60 common variables, representing the largest long-term data repository for flux-met data in the world. The standardized, quality-ensured data product facilitates multisite comparisons, model evaluations, and data syntheses.

20.
Nat Commun ; 13(1): 3843, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788612

RESUMEN

Arctic shrub expansion alters carbon budgets, albedo, and warming rates in high latitudes but remains challenging to predict due to unclear underlying controls. Observational studies and models typically use relationships between observed shrub presence and current environmental suitability (bioclimate and topography) to predict shrub expansion, while omitting shrub demographic processes and non-stationary response to changing climate. Here, we use high-resolution satellite imagery across Alaska and western Canada to show that observed shrub expansion has not been controlled by environmental suitability during 1984-2014, but can only be explained by considering seed dispersal and fire. These findings provide the impetus for better observations of recruitment and for incorporating currently underrepresented processes of seed dispersal and fire in land models to project shrub expansion and climate feedbacks. Integrating these dynamic processes with projected fire extent and climate, we estimate shrubs will expand into 25% of the non-shrub tundra by 2100, in contrast to 39% predicted based on increasing environmental suitability alone. Thus, using environmental suitability alone likely overestimates and misrepresents shrub expansion pattern and its associated carbon sink.


Asunto(s)
Incendios , Alaska , Regiones Árticas , Cambio Climático , Tundra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA