Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(W1): W541-W550, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35639517

RESUMEN

Most bacteria and archaea possess multiple antiviral defence systems that protect against infection by phages, archaeal viruses and mobile genetic elements. Our understanding of the diversity of defence systems has increased greatly in the last few years, and many more systems likely await discovery. To identify defence-related genes, we recently developed the Prokaryotic Antiviral Defence LOCator (PADLOC) bioinformatics tool. To increase the accessibility of PADLOC, we describe here the PADLOC web server (freely available at https://padloc.otago.ac.nz), allowing users to analyse whole genomes, metagenomic contigs, plasmids, phages and archaeal viruses. The web server includes a more than 5-fold increase in defence system types detected (since the first release) and expanded functionality enabling detection of CRISPR arrays and retron ncRNAs. Here, we provide user information such as input options, description of the multiple outputs, limitations and considerations for interpretation of the results, and guidance for subsequent analyses. The PADLOC web server also houses a precomputed database of the defence systems in > 230,000 RefSeq genomes. These data reveal two taxa, Campylobacterota and Spriochaetota, with unusual defence system diversity and abundance. Overall, the PADLOC web server provides a convenient and accessible resource for the detection of antiviral defence systems.


Asunto(s)
Archaea , Bacterias , Genoma Microbiano , Genómica , Internet , Programas Informáticos , Archaea/genética , Archaea/virología , Bacterias/genética , Bacterias/virología , Bacteriófagos/inmunología , Genoma Microbiano/genética , Plásmidos/genética , Células Procariotas/metabolismo , Células Procariotas/virología , Computadores , Genómica/métodos
2.
Nucleic Acids Res ; 50(11): 6084-6101, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35648479

RESUMEN

Reverse transcriptases (RTs) are enzymes capable of synthesizing DNA using RNA as a template. Within the last few years, a burst of research has led to the discovery of novel prokaryotic RTs with diverse antiviral properties, such as DRTs (Defense-associated RTs), which belong to the so-called group of unknown RTs (UG) and are closely related to the Abortive Infection system (Abi) RTs. In this work, we performed a systematic analysis of UG and Abi RTs, increasing the number of UG/Abi members up to 42 highly diverse groups, most of which are predicted to be functionally associated with other gene(s) or domain(s). Based on this information, we classified these systems into three major classes. In addition, we reveal that most of these groups are associated with defense functions and/or mobile genetic elements, and demonstrate the antiphage role of four novel groups. Besides, we highlight the presence of one of these systems in novel families of human gut viruses infecting members of the Bacteroidetes and Firmicutes phyla. This work lays the foundation for a comprehensive and unified understanding of these highly diverse RTs with enormous biotechnological potential.


Asunto(s)
ADN Polimerasa Dirigida por ARN , Virus , Humanos , Células Procariotas , ARN , ADN Polimerasa Dirigida por ARN/genética , Virus/genética
3.
Nucleic Acids Res ; 48(22): 12632-12647, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33275130

RESUMEN

Bacterial retrons consist of a reverse transcriptase (RT) and a contiguous non-coding RNA (ncRNA) gene. One third of annotated retrons carry additional open reading frames (ORFs), the contribution and significance of which in retron biology remains to be determined. In this study we developed a computational pipeline for the systematic prediction of genes specifically associated with retron RTs based on a previously reported large dataset representative of the diversity of prokaryotic RTs. We found that retrons generally comprise a tripartite system composed of the ncRNA, the RT and an additional protein or RT-fused domain with diverse enzymatic functions. These retron systems are highly modular, and their components have coevolved to different extents. Based on the additional module, we classified retrons into 13 types, some of which include additional variants. Our findings provide a basis for future studies on the biological function of retrons and for expanding their biotechnological applications.


Asunto(s)
ADN Bacteriano/genética , ARN Bacteriano/genética , ARN no Traducido/genética , ADN Polimerasa Dirigida por ARN/genética , Bacterias/genética , ADN de Cadena Simple , Sistemas de Lectura Abierta/genética
4.
Nucleic Acids Res ; 47(19): 10202-10211, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31504832

RESUMEN

The association of reverse transcriptases (RTs) with CRISPR-Cas system has recently attracted interest because the RT activity appears to facilitate the RT-dependent acquisition of spacers from RNA molecules. However, our understanding of this spacer acquisition process remains limited. We characterized the in vivo acquisition of spacers mediated by an RT-Cas1 fusion protein linked to a type III-D system from Vibrio vulnificus strain YJ016, and showed that the adaptation module, consisting of the RT-Cas1 fusion, two different Cas2 proteins (A and B) and one of the two CRISPR arrays, was completely functional in a heterologous host. We found that mutations of the active site of the RT domain significantly decreased the acquisition of new spacers and showed that this RT-Cas1-associated adaptation module was able to incorporate spacers from RNA molecules into the CRISPR array. We demonstrated that the two Cas2 proteins of the adaptation module were required for spacer acquisition. Furthermore, we found that several sequence-specific features were required for the acquisition and integration of spacers derived from any region of the genome, with no bias along the 5'and 3'ends of coding sequences. This study provides new insight into the RT-Cas1 fusion protein-mediated acquisition of spacers from RNA molecules.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endodesoxirribonucleasas/genética , Genoma Bacteriano/genética , Plásmidos/genética , ARN/genética , ADN Polimerasa Dirigida por ARN , Vibrio vulnificus/genética
5.
Nucleic Acids Res ; 47(14): 7605-7617, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31127285

RESUMEN

Group II introns are self-splicing mobile genetic retroelements. The spliced intron RNA and the intron-encoded protein (IEP) form ribonucleoprotein particles (RNPs) that recognize and invade specific DNA target sites. The IEP is a reverse transcriptase/maturase that may bear a C-terminal endonuclease domain enabling the RNP to cleave the target DNA strand to prime reverse transcription. However, some mobile introns, such as RmInt1, lack the En domain but nevertheless retrohome efficiently to transient single-stranded DNA target sites at a DNA replication fork. Their mobility is associated with host DNA replication, and they use the nascent lagging strand as a primer for reverse transcription. We searched for proteins that interact with RmInt1 RNPs and direct these RNPs to the DNA replication fork. Co-immunoprecipitation assays suggested that DnaN (the ß-sliding clamp), a component of DNA polymerase III, interacts with the protein component of the RmInt1 RNP. Pulldown assays, far-western blots and biolayer interferometry supported this interaction. Peptide binding assays also identified a putative DnaN-interacting motif in the RmInt1 IEP structurally conserved in group II intron IEPs. Our results suggest that intron RNP interacts with the ß-sliding clamp of the DNA replication machinery, favouring reverse splicing into the transient ssDNA at DNA replication forks.


Asunto(s)
Proteínas Bacterianas/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Empalme del ARN , Retroelementos/genética , Ribonucleoproteínas/genética , Sinorhizobium meliloti/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Inteínas/genética , Intrones/genética , Modelos Genéticos , Unión Proteica , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Ribonucleoproteínas/metabolismo , Sinorhizobium meliloti/metabolismo
6.
RNA Biol ; 16(7): 930-939, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30943851

RESUMEN

The RmInt1 group II intron is an efficient self-splicing mobile retroelement that catalyzes its own excision as lariat, linear and circular molecules. In vivo, the RmInt1 lariat and the reverse transcriptase (IEP) it encodes form a ribonucleoprotein particle (RNP) that recognizes the DNA target for site-specific full intron insertion via a two-step reverse splicing reaction. RNPs containing linear group II intron RNA are generally thought to be unable to complete the reverse splicing reaction. Here, we show that reconstituted in vitro RNPs containing linear RmInt1 ΔORF RNA can mediate the cleavage of single-stranded DNA substrates in a very precise manner with the attachment of the intron RNA to the 3´exon as the first step of a reverse splicing reaction. Notably, we also observe molecules in which the 5´exon is linked to the RmInt1 RNA, suggesting the completion of the reverse splicing reaction, albeit rather low and inefficiently. That process depends on DNA target recognition and can be successful completed by RmInt1 RNPs with linear RNA displaying 5´ modifications.


Asunto(s)
División del ADN , Intrones/genética , Empalme del ARN/genética , Ribonucleoproteínas/genética , Secuencia de Bases , ADN Bacteriano/metabolismo , ARN Bacteriano/genética , Ribonucleoproteínas/metabolismo , Sinorhizobium meliloti/genética , Factores de Tiempo
7.
RNA Biol ; 16(10): 1486-1493, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31276437

RESUMEN

Prokaryotic genomes harbour a plethora of uncharacterized reverse transcriptases (RTs). RTs phylogenetically related to those encoded by group-II introns have been found associated with type III CRISPR-Cas systems, adjacent or fused at the C-terminus to Cas1. It is thought that these RTs may have a relevant function in the CRISPR immune response mediating spacer acquisition from RNA molecules. The origin and relationships of these RTs and the ways in which the various protein domains evolved remain matters of debate. We carried out a large survey of annotated RTs in databases (198,760 sequences) and constructed a large dataset of unique representative sequences (9,141). The combined phylogenetic reconstruction and identification of the RTs and their various protein domains in the vicinity of CRISPR adaptation and effector modules revealed three different origins for these RTs, consistent with their emergence on multiple occasions: a larger group that have evolved from group-II intron RTs, and two minor lineages that may have arisen more recently from Retron/retron-like sequences and Abi-P2 RTs, the latter associated with type I-C systems. We also identified a particular group of RTs associated with CRISPR-cas loci in clade 12, fused C-terminally to an archaeo-eukaryotic primase (AEP), a protein domain (AE-Prim_S_like) forming a particular family within the AEP proper clade. Together, these data provide new insight into the evolution of CRISPR-Cas/RT systems.


Asunto(s)
Sistemas CRISPR-Cas , ADN Polimerasa Dirigida por ARN/genética , Mapeo Cromosómico , Ligamiento Genético , Variación Genética , Intrones , Filogenia , Células Procariotas/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo
8.
BMC Genomics ; 17: 556, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27495742

RESUMEN

BACKGROUND: Population genetic analyses based on genome-wide sequencing data have been carried out for Sinorhizobium medicae and S. meliloti, two closely related bacterial species forming nitrogen-fixing symbioses with plants of the genus Medicago. However, genome coverage was low or the isolates had a broad geographic distribution, making it difficult to interpret the estimated diversity and to unravel the early events underlying population genetic variations and ecological differentiation. RESULTS: Here, to gain insight into the early genome level variation and diversification within S. meliloti populations, we first used Illumina paired-end reads technology to sequence a new clone of S. meliloti strain GR4, a highly competitive strain for alfalfa nodulation. The Illumina data and the GR4 genome sequence previously obtained with 454 technology were used to generate a high-quality reference genome sequence. We then used Illumina technology to sequence the genomes of 13 S. meliloti isolates representative of the genomic variation within the GR4-type population, obtained from a single field site with a high degree of coverage. The genome sequences obtained were analyzed to determine nucleotide diversity, divergence times, polymorphism and genomic variation. Similar low levels of nucleotide diversity were observed for the chromosome, pSymB and pSymA replicons. The isolates displayed other types of variation, such as indels, recombination events, genomic island excision and the transposition of mobile elements. CONCLUSIONS: Our results suggest that the GR4-type population has experienced a process of demographic expansion and behaves as a stable genotypic cluster of genome-wide similarity, with most of the genome following a clonal pattern of evolution. Although some of genetic variation detected within the GR4-type population is probably due to genetic drift, others might be important in diversification and environmental adaptation.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Genómica , Sinorhizobium meliloti/genética , Teorema de Bayes , Mapeo Cromosómico , Elementos Transponibles de ADN , Variación Genética , Islas Genómicas , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Filogenia , Polimorfismo de Nucleótido Simple , Recombinación Genética , Sinorhizobium meliloti/clasificación
9.
RNA ; 20(12): 2000-10, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25336586

RESUMEN

Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3' exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3' splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3-IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.


Asunto(s)
Intrones/genética , Precursores del ARN/genética , Empalme del ARN/genética , ARN Catalítico/genética , Elementos Transponibles de ADN/genética , Exones/genética , Mutación , Conformación de Ácido Nucleico , Precursores del ARN/química , Sinorhizobium meliloti/genética
10.
Microb Ecol ; 71(1): 68-77, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26391805

RESUMEN

Isabel Lake is a moderate saline soda crater lake located in Isabel Island in the eastern tropical Pacific coast of Mexico. Lake is mainly formed by rainfall and is strongly affected by evaporation and high input of nutrients derived from excretions of a large bird community inhabiting the island. So far, only the island macrobiota has been studied. The knowledge of the prokaryotic biota inhabiting the upper layers of this meromictic lake can give clues for the maintenance of this ecosystem. We assessed the diversity and composition of prokaryotic community in sediments and water of the lake by DGGE profiling, 16S rRNA gene amplicon pyrosequencing, and cultivation techniques. The bacterial community is largely dominated by halophilic and halotolerant microorganisms. Alpha diversity estimations reveal higher value in sediments than in water (P > 0.005). The lake water is dominated by γ-Proteobacteria belonging to four main families where Halomonadaceae presents the highest abundance. Aerobic, phototrophic, and halotolerant prokaryotes such as Cyanobacteria GPIIa, Halomonas, Alcanivorax, Idiomarina, and Cyclobacterium genera are commonly found. However, in sediment samples, Formosa, Muricauda, and Salegentibacter genera corresponding to Flavobacteriaceae family accounted for 15-20 % of the diversity. Heterotrophs like those involved in sulfur cycle, Desulfotignum, Desulfuromonas, Desulfofustis, and Desulfopila, appear to play an important role in sediments. Finally, a collection of aerobic halophilic bacterial isolates was created from these samples; members of the genus Halomonas were predominantly isolated from lake water. This study contributes to state the bacterial diversity present in this particular soda saline crater lake.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Lagos/microbiología , Bacterias/genética , Bacterias/metabolismo , Islas , Lagos/análisis , México , Datos de Secuencia Molecular , Filogenia , Cloruro de Sodio/análisis , Cloruro de Sodio/metabolismo
11.
Microb Ecol ; 69(4): 895-904, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25732259

RESUMEN

Wildfires are frequent in the forests of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions, result in alterations of both the bacterial communities and the nitrogen cycle. We explored the effects of a holm oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the undisturbed and burned rhizospheres had a conservative nitrogen cycle with a larger number of sequences related to the nitrogen incorporation pathways and a lower number for nitrogen output. However, the burned rhizosphere showed a statistically significant increase in the number of sequences for nitrogen incorporation (allantoin utilization and nitrogen fixation) and a significantly lower number of sequences for denitrification and dissimilatory nitrite reductase subsystems, possibly in order to compensate for nitrogen loss from the soil after burning. The genetic potential for nitrogen incorporation into the ecosystem was assessed through the diversity of the nitrogenase reductase enzyme, which is encoded by the nifH gene. We found that nifH gene diversity and richness were lower in burned than in undisturbed rhizospheric soils. The structure of the bacterial communities involved in the nitrogen cycle showed a statistically significant increase of Actinobacteria and Firmicutes phyla after the wildfire. Both approaches showed the important role of gram-positive bacteria in the ecosystem after a wildfire.


Asunto(s)
Incendios , Bosques , Metagenoma , Microbiota/genética , Nitrógeno/metabolismo , Microbiología del Suelo , Quercus/metabolismo , Quercus/microbiología , Rizosfera , España
12.
RNA Biol ; 11(4): 391-401, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24646865

RESUMEN

Gene-targeting vectors derived from mobile group II introns capable of forming a ribonucleoprotein (RNP) complex containing excised intron lariat RNA and an intron-encoded protein (IEP) with reverse transcriptase (RT), maturase, and endonuclease (En) activities have been described. RmInt1 is an efficient mobile group II intron with an IEP lacking the En domain. We performed a comprehensive study of the rules governing RmInt1 target site recognition based on selection experiments with donor and recipient plasmid libraries, with randomization of the elements of the intron RNA involved in target recognition and the wild-type target site. The data obtained were used to develop a computer algorithm for identifying potential RmInt1 targets in any DNA sequence. Using this algorithm, we modified RmInt1 for the efficient recognition of DNA target sites at different locations in the Sinorhizobium meliloti chromosome. The retargeted RmInt1 integrated efficiently into the chromosome, regardless of the location of the target gene. Our results suggest that RmInt1 could be efficiently adapted for gene targeting.


Asunto(s)
Biología Computacional/métodos , Marcación de Gen , Intrones , Sinorhizobium meliloti/genética , Algoritmos , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Cromosomas Bacterianos , Exones , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación
13.
RNA Biol ; 11(8): 1061-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482895

RESUMEN

Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.


Asunto(s)
Inteínas/genética , Intrones/genética , Empalme del ARN/genética , Sinorhizobium meliloti/genética , Proteínas Bacterianas/genética , Sitios de Unión , Exones/genética , Genoma Bacteriano , ARN Catalítico , ADN Polimerasa Dirigida por ARN/genética , Ribonucleoproteínas/genética
14.
RNA Biol ; 11(5): 563-79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24786641

RESUMEN

The RNA chaperone Hfq is a global post-transcriptional regulator in bacteria. Here, we used RNAseq to analyze RNA populations from the legume symbiont Sinorhizobium meliloti that were co-immunoprecipitated (CoIP-RNA) with a FLAG-tagged Hfq in five growth/stress conditions. Hfq-bound transcripts (1315) were largely identified in stressed bacteria and derived from small RNAs (sRNAs), both trans-encoded (6.4%) and antisense (asRNAs; 6.3%), and mRNAs (86%). Pull-down with Hfq recovered a small proportion of annotated S. meliloti sRNAs (14% of trans-sRNAs and 2% of asRNAs) suggesting a discrete impact of this protein in sRNA pathways. Nonetheless, Hfq selectively stabilized CoIP-enriched sRNAs, anticipating that these interactions are functionally significant. Transcription of 26 Hfq-bound sRNAs was predicted to occur from promoters recognized by the major stress σ factors σ(E2) or σ(H1/2). Recovery rates of sRNAs in each of the CoIP-RNA libraries suggest a large impact of Hfq-assisted riboregulation in S. meliloti osmoadaptation. Hfq directly targeted 18% of the predicted S. meliloti mRNAs, which encode functionally diverse proteins involved in transport and metabolism, σ(E2)-dependent stress responses, quorum sensing, flagella biosynthesis, ribosome, and membrane assembly or symbiotic nitrogen fixation. Canonical targeting of the 5' regions of two of the ABC transporter mRNAs by the homologous Hfq-binding AbcR1 and AbcR2 sRNAs leading to inhibition of protein synthesis was confirmed in vivo. We therefore provide a comprehensive resource for the systems-level deciphering of hitherto unexplored S. meliloti stress and symbiotic post-transcriptional regulons and the identification of Hfq-dependent sRNA-mRNA regulatory pairs.


Asunto(s)
Proteína de Factor 1 del Huésped/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Estrés Fisiológico , Emparejamiento Base , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Reproducibilidad de los Resultados
15.
Nucleic Acids Res ; 39(3): 1095-104, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20876688

RESUMEN

Group II introns act as both large catalytic RNAs and mobile retroelements. They are found in organelle and bacterial genomes and are spliced via a lariat intermediate, in a mechanism similar to that of spliceosomal introns. However, their distribution and insertion patterns, particularly for bacterial group II introns, suggest that they function and behave more like retroelements than organelle introns. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. This group II intron is excised, in vivo and in vitro, as intron lariats. However, the complete splicing reaction in vivo remains to be elucidated. A lacZ reporter gene system, northern blotting and real-time reverse transcription were carried out to investigate RmInt1 splicing activity. Splicing efficiency of 0.07 ± 0.02% was recorded. These findings suggest that bacterial group II introns function more like retroelements than spliceosomal introns. Their location is consistent with a role for these introns in preventing the spread of other potentially harmful mobile elements in bacteria.


Asunto(s)
Intrones , Empalme del ARN , Retroelementos , Sinorhizobium meliloti/genética , Genes Reporteros , Plásmidos/química
16.
J Biol Chem ; 286(24): 21154-63, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21521690

RESUMEN

Excision of the bacterial group II intron RmInt1 has been demonstrated in vivo, resulting in the formation of both intron lariat and putative intron RNA circles. We show here that the bulged adenosine in domain VI of RmInt1 is required for splicing via the branching pathway, but branch site mutants produce small numbers of RNA molecules in which the first G residue of the intron is linked to the last C residue. Mutations in the coordination loop in domain I reduced splicing efficiency, but branched templates clearly predominated among splicing products. We also found that a single substitution at the EBS3 position (G329C), preventing EBS3-IBS3 pairing, resulted in the production of 50 to 100 times more RNA molecules in which the 5' and 3' extremities were joined. We provide evidence that these intron molecules may correspond to both, intron circles linked by a 2'-5' phosphodiester bond, and tandem, head-to-tail intron copies.


Asunto(s)
Adenosina/química , Intrones , Sinorhizobium meliloti/metabolismo , Secuencia de Bases , Sitios de Unión , Exones , Genes Bacterianos , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Empalme del ARN , ARN Bacteriano , ARN Catalítico/química , Elementos Reguladores de la Transcripción , Ribonucleoproteínas/genética
17.
RNA Biol ; 9(2): 119-29, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22418845

RESUMEN

We have performed a computational comparative analysis of six small non-coding RNA (sRNA) families in α-proteobacteria. Members of these families were first identified in the intergenic regions of the nitrogen-fixing endosymbiont S. meliloti by a combined bioinformatics screen followed by experimental verification. Consensus secondary structures inferred from covariance models for each sRNA family evidenced in some cases conserved motifs putatively relevant to the function of trans-encoded base-pairing sRNAs i.e., Hfq-binding signatures and exposed anti Shine-Dalgarno sequences. Two particular family models, namely αr15 and αr35, shared own sub-structural modules with the Rfam model suhB (RF00519) and the uncharacterized sRNA family αr35b, respectively. A third sRNA family, termed αr45, has homology to the cis-acting regulatory element speF (RF00518). However, new experimental data further confirmed that the S. meliloti αr45 representative is an Hfq-binding sRNA processed from or expressed independently of speF, thus refining the Rfam speF model annotation. All the six families have members in phylogenetically related plant-interacting bacteria and animal pathogens of the order of the Rhizobiales, some occurring with high levels of paralogy in individual genomes. In silico and experimental evidences predict differential regulation of paralogous sRNAs in S. meliloti 1021. The distribution patterns of these sRNA families suggest major contributions of vertical inheritance and extensive ancestral duplication events to the evolution of sRNAs in plant-interacting bacteria.


Asunto(s)
Alphaproteobacteria/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Secuencia de Bases , Biología Computacional/métodos , Regulación Bacteriana de la Expresión Génica , Orden Génico , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Pequeño no Traducido/química , Sinorhizobium meliloti/genética
18.
Antonie Van Leeuwenhoek ; 101(4): 891-904, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22307841

RESUMEN

The nature reserve of Tehuacan-Cuicatlan in central Mexico is known for its diversity and endemism mainly in cactus plants. Although the xerophytic flora is reasonably documented, the bacterial communities associated with these species have been largely neglected. We assessed the diversity and composition of bacterial communities in bulk (non-rhizospheric) soil and the rhizosphere of three cactus plant species: Mammillaria carnea, Opuntia pilifera and Stenocereus stellatus, approached using cultivation and molecular techniques, considering the possible effect of dry and rainy seasons. Cultivation-dependent methods were focused on putative N(2)-fixers and heterotrophic aerobic bacteria, in the two media tested the values obtained for dry season samples grouped together regardless of the sample type (rhizospheric or non-rhizospheric), these groups also included the non-rhizospheric sample for rainy season, on each medium. These CFU values were smaller and significantly different from those obtained on rhizospheric samples from rainy season. Genera composition among isolates of the rhizospheric samples was very similar for each season, the most abundant taxa being α-Proteobacteria, Actinobacteria and Firmicutes. Interestingly, the genus Ochrobactrum was highly represented among rhizospheric samples, when cultured in N-free medium. The structure of the bacterial communities was approached with molecular techniques targeting partial 16S rRNA sequences such as denaturing gradient gel electrophoresis and serial analysis of ribosomal sequence tags. Under these approaches, the most represented bacterial phyla were Actinobacteria, Proteobacteria and Acidobacteria. The first two were also highly represented when using isolation techniques.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biota , Cactaceae/microbiología , Raíces de Plantas/microbiología , Rizosfera , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , México , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año , Análisis de Secuencia de ADN
19.
Front Mol Biosci ; 9: 834020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281263

RESUMEN

RmInt1 is a group II intron encoding a reverse transcriptase protein (IEP) lacking the C-terminal endonuclease domain. RmInt1 is an efficient mobile retroelement that predominantly reverse splices into the transient single-stranded DNA at the template for lagging strand DNA synthesis during host replication, a process facilitated by the interaction of the RmInt1 IEP with DnaN at the replication fork. It has been suggested that group II intron ribonucleoprotein particles bind DNA nonspecifically, and then scan for their correct target site. In this study, we investigated RmInt1 binding sites throughout the Sinorhizobium meliloti genome, by chromatin-immunoprecipitation coupled with next-generation sequencing. We found that RmInt1 binding sites cluster around the bidirectional replication origin of each of the three replicons comprising the S. meliloti genome. Our results provide new evidence linking group II intron mobility to host DNA replication.

20.
BMC Mol Biol ; 12: 24, 2011 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-21605368

RESUMEN

BACKGROUND: Group II intron splicing proceeds through two sequential transesterification reactions in which the 5' and 3'-exons are joined together and the lariat intron is released. The intron-encoded protein (IEP) assists the splicing of the intron in vivo and remains bound to the excised intron lariat RNA in a ribonucleoprotein particle (RNP) that promotes intron mobility. Exon recognition occurs through base-pairing interactions between two guide sequences on the ribozyme domain dI known as EBS1 and EBS2 and two stretches of sequence known as IBS1 and IBS2 on the 5' exon, whereas the 3' exon is recognized through interaction with the sequence immediately upstream from EBS1 [(δ-δ' interaction (subgroup IIA)] or with a nucleotide [(EBS3-IBS3 interaction (subgroup IIB and IIC))] located in the coordination-loop of dI. The δ nucleotide is involved in base pairing with another intron residue (δ') in subgroup IIB introns and this interaction facilitates base pairing between the 5' exon and the intron. RESULTS: In this study, we investigated nucleotide requirements in the distal 5'- and 3' exon regions, EBS-IBS interactions and δ-δ' pairing for excision of the group IIB intron RmInt1 in vivo. We found that the EBS1-IBS1 interaction was required and sufficient for RmInt1 excision. In addition, we provide evidence for the occurrence of canonical δ-δ' pairing and its importance for the intron excision in vivo. CONCLUSIONS: The excision in vivo of the RmInt1 intron is a favored process, with very few constraints for sequence recognition in both the 5' and 3'-exons. Our results contribute to understand how group II introns spread in nature, and might facilitate the use of RmInt1 in gene targeting.


Asunto(s)
Exones , ARN Bacteriano/metabolismo , ARN Catalítico/metabolismo , Sinorhizobium meliloti/genética , Emparejamiento Base , Secuencia de Bases , Intrones , Mutación , Conformación de Ácido Nucleico , Empalme del ARN , ARN Bacteriano/genética , ARN Catalítico/genética , Sinorhizobium meliloti/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA