Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Hepatol ; 75(4): 865-878, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33992698

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. METHODS: We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. RESULTS: Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-ß proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. CONCLUSIONS: NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. LAY SUMMARY: The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Biología Molecular/estadística & datos numéricos , Enfermedad del Hígado Graso no Alcohólico/genética , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/etiología , Femenino , Humanos , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , Biología Molecular/métodos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Factores de Riesgo
2.
Gastroenterology ; 157(5): 1383-1397.e11, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344396

RESUMEN

BACKGROUND & AIMS: Cirrhosis and chronic inflammation precede development of hepatocellular carcinoma (HCC) in approximately 80% of cases. We investigated immune-related gene expression patterns in liver tissues surrounding early-stage HCCs and chemopreventive agents that might alter these patterns to prevent liver tumorigenesis. METHODS: We analyzed gene expression profiles of nontumor liver tissues from 392 patients with early-stage HCC (training set, N = 167 and validation set, N = 225) and liver tissue from patients with cirrhosis without HCC (N = 216, controls) to identify changes in expression of genes that regulate the immune response that could contribute to hepatocarcinogenesis. We defined 172 genes as markers for this deregulated immune response, which we called the immune-mediated cancer field (ICF). We analyzed the expression data of liver tissues from 216 patients with cirrhosis without HCC and investigated the association between this gene expression signature and development of HCC and outcomes of patients (median follow-up, 10 years). Human liver tissues were also analyzed by histology. C57BL/6J mice were given a single injection of diethylnitrosamine (DEN) followed by weekly doses of carbon tetrachloride to induce liver fibrosis and tumorigenesis. Mice were then orally given the multiple tyrosine inhibitor nintedanib or vehicle (controls); liver tissues were collected and histology, transcriptome, and protein analyses were performed. We also analyzed transcriptomes of liver tissues collected from mice on a choline-deficient high-fat diet, which developed chronic liver inflammation and tumors, orally given aspirin and clopidogrel or the anti-inflammatory agent sulindac vs mice on a chow (control) diet. RESULTS: We found the ICF gene expression pattern in 50% of liver tissues from patients with cirrhosis without HCC and in 60% of nontumor liver tissues from patients with early-stage HCC. The liver tissues with the ICF gene expression pattern had 3 different features: increased numbers of effector T cells; increased expression of genes that suppress the immune response and activation of transforming growth factor ß signaling; or expression of genes that promote inflammation and activation of interferon gamma signaling. Patients with cirrhosis and liver tissues with the immunosuppressive profile (10% of cases) had a higher risk of HCC (hazard ratio, 2.41; 95% confidence interval, 1.21-4.80). Mice with chemically induced fibrosis or diet-induced steatohepatitis given nintedanib or aspirin and clopidogrel down-regulated the ICF gene expression pattern in liver and developed fewer and smaller tumors than mice given vehicle. CONCLUSIONS: We identified an immune-related gene expression pattern in liver tissues of patients with early-stage HCC, called the ICF, that is associated with risk of HCC development in patients with cirrhosis. Administration of nintedanib or aspirin and clopidogrel to mice with chronic liver inflammation caused loss of this gene expression pattern and development of fewer and smaller liver tumors. Agents that alter immune regulatory gene expression patterns associated with carcinogenesis might be tested as chemopreventive agents in patients with cirrhosis.


Asunto(s)
Anticarcinógenos/farmacología , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/prevención & control , Neoplasias Hepáticas/genética , Transcriptoma , Animales , Aspirina/farmacología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/patología , Clopidogrel/farmacología , Dietilnitrosamina , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Indoles/farmacología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones Endogámicos C57BL , Escape del Tumor/genética , Microambiente Tumoral
3.
Gut ; 68(6): 1065-1075, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30108162

RESUMEN

OBJECTIVE: Sorafenib is the standard systemic therapy for advanced hepatocellular carcinoma (HCC). Survival benefits of resection/local ablation for early HCC are compromised by 70% 5-year recurrence rates. The phase 3 STORM trial comparing sorafenib with placebo as adjuvant treatment did not achieve its primary endpoint of improving recurrence-free survival (RFS). The biomarker companion study BIOSTORM aims to define (A) predictors of recurrence prevention with sorafenib and (B) prognostic factors with B level of evidence. DESIGN: Tumour tissue from 188 patients randomised to receive sorafenib (83) or placebo (105) in the STORM trial was collected. Analyses included gene expression profiling, targeted exome sequencing (19 known oncodrivers), immunohistochemistry (pERK, pVEGFR2, Ki67), fluorescence in situ hybridisation (VEGFA) and immunome. A gene signature capturing improved RFS in sorafenib-treated patients was generated. All 70 RFS events were recurrences, thus time to recurrence equalled RFS. Predictive and prognostic value was assessed using Cox regression models and interaction test. RESULTS: BIOSTORM recapitulates clinicopathological characteristics of STORM. None of the biomarkers tested (related to angiogenesis and proliferation) or previously proposed gene signatures, or mutations predicted sorafenib benefit or recurrence. A newly generated 146-gene signature identifying 30% of patients captured benefit to sorafenib in terms of RFS (p of interaction=0.04). These sorafenib RFS responders were significantly enriched in CD4+ T, B and cytolytic natural killer cells, and lacked activated adaptive immune components. Hepatocytic pERK (HR=2.41; p=0.012) and microvascular invasion (HR=2.09; p=0.017) were independent prognostic factors. CONCLUSION: In BIOSTORM, only hepatocytic pERK and microvascular invasion predicted poor RFS. No mutation, gene amplification or previously proposed gene signatures predicted sorafenib benefit. A newly generated multigene signature associated with improved RFS on sorafenib warrants further validation. TRIAL REGISTRATION NUMBER: NCT00692770.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/patología , Sorafenib/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Biopsia con Aguja , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Quimioterapia Adyuvante , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Invasividad Neoplásica/patología , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/terapia , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Pronóstico , Análisis de Supervivencia , Adhesión del Tejido , Resultado del Tratamiento
4.
Gut ; 66(3): 530-540, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26658144

RESUMEN

OBJECTIVE: Sorafenib is effective in hepatocellular carcinoma (HCC), but patients ultimately present disease progression. Molecular mechanisms underlying acquired resistance are still unknown. Herein, we characterise the role of tumour-initiating cells (T-ICs) and signalling pathways involved in sorafenib resistance. DESIGN: HCC xenograft mice treated with sorafenib (n=22) were explored for responsiveness (n=5) and acquired resistance (n=17). Mechanism of acquired resistance were assessed by: (1) role of T-ICs by in vitro sphere formation and in vivo tumourigenesis assays using NOD/SCID mice, (2) activation of alternative signalling pathways and (3) efficacy of anti-FGF and anti-IGF drugs in experimental models. Gene expression (microarray, quantitative real-time PCR (qRT-PCR)) and protein analyses (immunohistochemistry, western blot) were conducted. A novel gene signature of sorafenib resistance was generated and tested in two independent cohorts. RESULTS: Sorafenib-acquired resistant tumours showed significant enrichment of T-ICs (164 cells needed to create a tumour) versus sorafenib-sensitive tumours (13 400 cells) and non-treated tumours (1292 cells), p<0.001. Tumours with sorafenib-acquired resistance were enriched with insulin-like growth factor (IGF) and fibroblast growth factor (FGF) signalling cascades (false discovery rate (FDR)<0.05). In vitro, cells derived from sorafenib-acquired resistant tumours and two sorafenib-resistant HCC cell lines were responsive to IGF or FGF inhibition. In vivo, FGF blockade delayed tumour growth and improved survival in sorafenib-resistant tumours. A sorafenib-resistance 175 gene signature was characterised by enrichment of progenitor cell features, aggressive tumorous traits and predicted poor survival in two cohorts (n=442 patients with HCC). CONCLUSIONS: Acquired resistance to sorafenib is driven by T-ICs with enrichment of progenitor markers and activation of IGF and FGF signalling. Inhibition of these pathways would benefit a subset of patients after sorafenib progression.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Resistencia a Antineoplásicos , Factores de Crecimiento de Fibroblastos/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Niacinamida/análogos & derivados , Compuestos de Fenilurea/uso terapéutico , Somatomedinas/metabolismo , Anciano , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/genética , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Niacinamida/uso terapéutico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inhibidores , Receptores de Somatomedina/metabolismo , Transducción de Señal , Somatomedinas/antagonistas & inhibidores , Somatomedinas/genética , Sorafenib , Esferoides Celulares , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Hepatol ; 67(6): 1222-1231, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28843658

RESUMEN

BACKGROUND & AIMS: According to the clonal model of tumor evolution, trunk alterations arise at early stages and are ubiquitous. Through the characterization of early stages of hepatocarcinogenesis, we aimed to identify trunk alterations in hepatocellular carcinoma (HCC) and study their intra- and inter-tumor distribution in advanced lesions. METHODS: A total of 151 samples representing the multistep process of hepatocarcinogenesis were analyzed by targeted-sequencing and a single nucleotide polymorphism array. Genes altered in early lesions (31 dysplastic nodules [DNs] and 38 small HCCs [sHCC]) were defined as trunk. Their distribution was explored in: a) different regions of large tumors (43 regions, 21 tumors), and b) different nodules of the same patient (39 tumors, 17 patients). Multinodular lesions were classified as intrahepatic metastases (IMs) or synchronous tumors based on chromosomal aberrations. RESULTS: TERT promoter mutations (10.5%) and broad copy-number aberrations in chromosomes 1 and 8 (3-7%) were identified as trunk gatekeepers in DNs and were maintained in sHCCs. Trunk drivers identified in sHCCs included TP53 (23%) and CTNNB1 (11%) mutations, and focal amplifications or deletions in known drivers (6%). Overall, TERT, TP53 and CTNNB1 mutations were the most frequent trunk events and at least one was present in 51% of sHCCs. Around 90% of mutations in these genes were ubiquitous among different regions of large tumors. In multinodular HCCs, 35% of patients harbored IMs; 85% of mutations in TERT, TP53 and/or CTNNB1 were retained in primary and metastatic tumors. CONCLUSIONS: Trunk events in early stages (TERT, TP53, CTNNB1 mutations) were ubiquitous across different regions of the same tumor and between primary and metastatic nodules in >85% of cases. This concept supports the knowledge that single biopsies would suffice to capture trunk mutations in HCC. LAY SUMMARY: Trunk alterations arise at early stages of cancer and are shared among all malignant cells of the tumor. In order to identify trunk alterations in HCC, we characterized early stages of hepatocarcinogenesis represented by dysplastic nodules and small lesions. Mutations in TERT, TP53 and CTNNB1 genes were the most frequent. Analyses in more advanced lesions showed that mutations in these same genes were shared between different regions of the same tumor and between primary and metastatic tumors, suggesting their trunk role in this disease.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mutación , Carcinoma Hepatocelular/patología , Variaciones en el Número de Copia de ADN , Humanos , Neoplasias Hepáticas/patología , Regiones Promotoras Genéticas , Telomerasa/genética , Proteína p53 Supresora de Tumor/genética , beta Catenina/genética
6.
Gastroenterology ; 151(6): 1192-1205, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27614046

RESUMEN

BACKGROUND & AIMS: Effective treatments are urgently needed for hepatocellular carcinoma (HCC), which is usually diagnosed at advanced stages. Signaling via the insulin-like growth factor (IGF) pathway is aberrantly activated in HCC by IGF2 overexpression. We aimed to elucidate the mechanism of IGF2 overexpression and its oncogenic activities and evaluate the anti-tumor effects of reducing IGF2 signaling. METHODS: We obtained 228 HCC samples from patients who underwent liver resection, 168 paired non-tumor adjacent cirrhotic liver samples, and 10 non-tumor liver tissues from patients undergoing resection for hepatic hemangioma. We analyzed gene expression, microRNA, and DNA methylation profiles for all samples, focusing on genes in the IGF signaling pathway. IGF2 was expressed in SNU449 and PLC5 HCC cells and knocked down with small hairpin RNAs in Hep3B and Huh7 cell lines. We analyzed these cells for proliferation, apoptosis, migration, and colony formation. We performed studies in mice engineered to express Myc and Akt1 in liver, which develop liver tumors, with or without hepatic expression of Igf2. Mice with xenograft tumors grown from HCC cells were given a monoclonal antibody against IGF1 and IGF2 (xentuzumab), along with sorafenib; tumor growth was measured and tissues were analyzed by immunohistochemistry and immunoblots. RESULTS: Levels of IGF2 messenger RNA and protein were increased >20-fold in 15% of human HCC tissues compared with non-tumor liver tissues. Methylation at the fetal promoters of IGF2 was reduced in the HCC samples and cell lines that overexpressed IGF2, compared with those that did not overexpress this gene, and non-tumor tissues. Tumors that overexpressed IGF2 had gene expression patterns significantly associated with hepatic progenitor cell features, stellate cell activation, NOTCH signaling, and an aggressive phenotype (P < .0001). In mice engineered to express Myc and Akt1 in liver, co-expression of Igf2 accelerated formation of liver tumors, compared to mice with livers expressing only Myc and Akt1, and shortened survival times (P = .02). The antibody xentuzumab blocked phosphorylation of IGF1 receptor in HCC cell lines and reduced their proliferation and colony formation. In mice with xenograft tumors, injection of xentuzumab, with or without sorafenib, slowed tumor growth and increased survival times compared to vehicle or sorafenib alone. Xentuzumab inhibited phosphorylation of IGF1 receptor and AKT and reduced decreased tumor vascularization compared with vehicle. CONCLUSIONS: A large proportion of HCC samples were found to overexpress IGF2, via demethylation of its fetal promoter. Overexpression of IGF2 accelerates formation of liver tumors in mice with hepatic expression of MYC and AKT1, via activation of IGF1 receptor signaling. An antibody against IGF1 and IGF2 slows growth of xenograft tumors and increases survival of these mice.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Carcinoma Hepatocelular/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Hepáticas/genética , ARN Mensajero/metabolismo , Animales , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/uso terapéutico , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Metilación de ADN , Epigénesis Genética , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Neovascularización Patológica/tratamiento farmacológico , Niacinamida/análogos & derivados , Niacinamida/uso terapéutico , Compuestos de Fenilurea/uso terapéutico , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transducción de Señal/genética , Sorafenib , Ensayo de Tumor de Célula Madre , Regulación hacia Arriba
8.
Clin Cancer Res ; 28(20): 4509-4520, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35998012

RESUMEN

PURPOSE: Mongolia has the world's highest incidence of hepatocellular carcinoma (HCC), with ∼100 cases/100,000 inhabitants, although the reasons for this have not been thoroughly delineated. EXPERIMENTAL DESIGN: We performed a molecular characterization of Mongolian (n = 192) compared with Western (n = 187) HCCs by RNA sequencing and whole-exome sequencing to unveil distinct genomic and transcriptomic features associated with environmental factors in this population. RESULTS: Mongolian patients were younger, with higher female prevalence, and with predominantly HBV-HDV coinfection etiology. Mongolian HCCs presented significantly higher rates of protein-coding mutations (121 vs. 70 mutations per tumor in Western), and in specific driver HCC genes (i.e., APOB and TSC2). Four mutational signatures characterized Mongolian samples, one of which was novel (SBS Mongolia) and present in 25% of Mongolian HCC cases. This signature showed a distinct substitution profile with a high proportion of T>G substitutions and was significantly associated with a signature of exposure to the environmental agent dimethyl sulfate (71%), a 2A carcinogenic associated with coal combustion. Transcriptomic-based analysis delineated three molecular clusters, two not present in Western HCC; one with a highly inflamed profile and the other significantly associated with younger female patients. CONCLUSIONS: Mongolian HCC has unique molecular traits with a high mutational burden and a novel mutational signature associated with genotoxic environmental factors present in this country.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apolipoproteínas B/genética , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/genética , Carbón Mineral , Femenino , Humanos , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Mongolia/epidemiología , Mutación
9.
Clin Cancer Res ; 26(23): 6350-6361, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873569

RESUMEN

PURPOSE: Chromosomal instability is a hallmark of cancer that results in broad and focal copy-number alterations (CNAs), two events associated with distinct molecular, immunologic, and clinical features. In hepatocellular carcinoma (HCC), the role of CNAs has not been thoroughly assessed. Thus, we dissected the impact of CNA burdens on HCC molecular and immune features. EXPERIMENTAL DESIGN: We analyzed SNP array data from 452 paired tumor/adjacent resected HCCs and 25 dysplastic nodules. For each sample, broad and focal CNA burdens were quantified using CNApp, and the resulting broad scores (BS) and focal scores (FS) were correlated with transcriptomic, mutational, and methylation profiles, tumor immune composition, and clinicopathologic data. RESULTS: HCCs with low broad CNA burdens (defined as BS ≤ 4; 17%) presented high inflammation, active infiltrate signaling, high cytolytic activity, and enrichment of the "HCC immune class" and gene signatures related to antigen presentation. Conversely, tumors with chromosomal instability (high broad CNA loads, BS ≥ 11; 40%), displayed immune-excluded traits and were linked to proliferation, TP53 dysfunction, and DNA repair. Candidate determinants of the low cytotoxicity and immune exclusion features of high-BS tumors included alterations in antigen-presenting machinery (i.e., HLA), widespread hypomethylation, and decreased rates of observed/expected neoantigenic mutations. High FSs were independent of tumor immune features, but were related to proliferation, TP53 dysfunction, and progenitor cell traits. CONCLUSIONS: HCCs with high chromosomal instability exhibit features of immune exclusion, whereas tumors displaying low burdens of broad CNAs present an immune active profile. These CNA scores can be tested to predict response to immunotherapies.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Inestabilidad Cromosómica , Variaciones en el Número de Copia de ADN , Neoplasias Hepáticas/patología , Mutación , Anciano , Antígenos de Neoplasias/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Metilación de ADN , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Masculino , Persona de Mediana Edad , Fenotipo , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA