Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39133135

RESUMEN

Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.


Asunto(s)
Diferenciación Celular , Endodermo , Factor de Transcripción GATA6 , Corazón , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/genética , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Endodermo/metabolismo , Endodermo/embriología , Endodermo/citología , Diferenciación Celular/genética , Corazón/embriología , Organogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Fosfatasa 6 de Especificidad Dual/metabolismo , Fosfatasa 6 de Especificidad Dual/genética , Factores de Transcripción GATA
2.
Proc Natl Acad Sci U S A ; 112(46): E6359-68, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578796

RESUMEN

Anemia is the predominant clinical manifestation of myelodysplastic syndromes (MDS). Loss or deletion of chromosome 7 is commonly seen in MDS and leads to a poor prognosis. However, the identity of functionally relevant, dysplasia-causing, genes on 7q remains unclear. Dedicator of cytokinesis 4 (DOCK4) is a GTPase exchange factor, and its gene maps to the commonly deleted 7q region. We demonstrate that DOCK4 is underexpressed in MDS bone marrow samples and that the reduced expression is associated with decreased overall survival in patients. We show that depletion of DOCK4 levels leads to erythroid cells with dysplastic morphology both in vivo and in vitro. We established a novel single-cell assay to quantify disrupted F-actin filament network in erythroblasts and demonstrate that reduced expression of DOCK4 leads to disruption of the actin filaments, resulting in erythroid dysplasia that phenocopies the red blood cell (RBC) defects seen in samples from MDS patients. Reexpression of DOCK4 in -7q MDS patient erythroblasts resulted in significant erythropoietic improvements. Mechanisms underlying F-actin disruption revealed that DOCK4 knockdown reduces ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase activation, leading to increased phosphorylation of the actin-stabilizing protein ADDUCIN in MDS samples. These data identify DOCK4 as a putative 7q gene whose reduced expression can lead to erythroid dysplasia.


Asunto(s)
Eritroblastos/metabolismo , Proteínas Activadoras de GTPasa/biosíntesis , Regulación de la Expresión Génica , Síndromes Mielodisplásicos/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Eritroblastos/patología , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , Masculino , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
3.
Blood ; 123(9): 1384-92, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24425803

RESUMEN

The RNA-binding protein Elavl1 (also known as HuR) regulates gene expression at the posttranscriptional level. Early embryonic lethality of the mouse knockout challenges investigation into hematopoietic functions for Elavl1. We identified 2 zebrafish elavl1 genes, designated elavl1a (the predominant isoform during embryogenesis) and elavl1b. Knockdown of Elavl1a using specific morpholinos resulted in a striking loss of primitive embryonic erythropoiesis. Transcript levels for early hematopoietic regulatory genes including lmo2 and scl are unaltered, but levels of gata1 transcripts, encoding a key erythroid transcription factor, are significantly reduced in elavl1a morphants. Other mesoderm markers are mostly unchanged by depletion of Elav1a. The 3'-untranslated region (UTR) of gata1 contains putative Elavl1a-binding sites that support robust expression levels when fused to a transfected luciferase reporter gene, and Elavl1a binds the gata1 3'-UTR sequences in a manner dependent on these sites. Moreover, expression of a transgenic reporter specifically in developing embryonic erythroid cells is enhanced by addition of the gata1 3'UTR with intact Elavl1-binding sites. Injection of gata1 messenger RNA partially rescues the erythropoiesis defect caused by Elavl1 knockdown. Our study reveals a posttranscriptional regulatory mechanism by which RNA-binding protein Elavl1a regulates embryonic erythropoiesis by maintaining appropriate levels of gata1 expression.


Asunto(s)
Proteínas ELAV/fisiología , Eritropoyesis/genética , Factor de Transcripción GATA1/genética , Procesamiento Postranscripcional del ARN/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Regiones no Traducidas 3'/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión/genética , Línea Celular Tumoral , Embrión no Mamífero , Factor de Transcripción GATA1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas de Pez Cebra/metabolismo
4.
Bioorg Med Chem ; 22(2): 673-83, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24393720

RESUMEN

Retinoids comprise a group of compounds each composed of three basic parts: a trimethylated cyclohexene ring that is a bulky hydrophobic group, a conjugated tetraene side chain that functions as a linker unit, and a polar carbon-oxygen functional group. Biochemical conversion of carotenoid or other retinoids to retinoic acid (RA) is essential for normal regulation of a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids regulate various physiological outputs by binding to nuclear receptors called retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which themselves are DNA-binding transcriptional regulators. The functional response of RA and their receptors are modulated by a host of coactivators and corepressors. Retinoids are essential in the development and function of several organ systems; however, deregulated retinoid signaling can contribute to serious diseases. Several natural and synthetic retinoids are in clinical use or undergoing trials for treating specific diseases including cancer. In this review, we provide a broad overview on the importance of retinoids in development and various diseases, highlighting various retinoids in the drug discovery process, ranging all the way from retinoid chemistry to clinical uses and imaging.


Asunto(s)
Ojo/metabolismo , Riñón/metabolismo , Enfermedades Metabólicas/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Tretinoina/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Descubrimiento de Drogas , Ojo/química , Ojo/efectos de los fármacos , Humanos , Riñón/química , Riñón/efectos de los fármacos , Enfermedades Metabólicas/tratamiento farmacológico , Estructura Molecular , Neoplasias/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Tretinoina/química , Tretinoina/farmacología
5.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39091857

RESUMEN

G protein-coupled receptors (GPCRs) are the largest class of membrane-bound receptors and transmit critical signals from the extracellular to the intracellular spaces. Transcriptomic data of resected breast tumors shows that low mRNA expression of the orphan GPCR GPR52 correlates with reduced overall survival in breast cancer patients, leading to the hypothesis that loss of GPR52 supports breast cancer progression. CRISPR-Cas9 was used to knockout GPR52 in human triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, and in the non-cancerous breast epithelial cell line, MCF10A. Loss of GPR52 was found to be associated with increased cell-cell interaction in 2D cultures, altered 3D spheroid morphology, and increased propensity to organize and invade collectively in Matrigel. Furthermore, GPR52 loss was associated with features of EMT in MDA-MB-468 cells. To determine the in vivo impact of GPR52 loss, MDA-MB-468 cells were injected into zebrafish and loss of GPR52 was associated with a greater total cancer area compared to control cells. RNA-sequencing and proteomic analyses of GPR52-null breast cancer cells reveal an increased cAMP signaling signature. Consistently, we found that treatment of wild-type (WT) cells with forskolin, which stimulates production of cAMP, induces some phenotypic changes associated with GPR52 loss, and inhibition of cAMP production rescued some of the GPR52 KO phenotypes. Overall, our results reveal GPR52 loss as a potential mechanism by which breast cancer progression may occur and support the investigation of GPR52 agonism as a therapeutic option in breast cancer.

6.
Proc Natl Acad Sci U S A ; 105(1): 94-9, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18160536

RESUMEN

The ability to store fat in the form of cytoplasmic triglyceride droplets is conserved from Saccharomyces cerevisiae to humans. Although much is known regarding the composition and catabolism of lipid droplets, the molecular components necessary for the biogenesis of lipid droplets have remained obscure. Here we report the characterization of a conserved gene family important for lipid droplet formation named fat-inducing transcript (FIT). FIT1 and FIT2 are endoplasmic reticulum resident membrane proteins that induce lipid droplet accumulation in cell culture and when expressed in mouse liver. shRNA silencing of FIT2 in 3T3-LI adipocytes prevents accumulation of lipid droplets, and depletion of FIT2 in zebrafish blocks diet-induced accumulation of lipid droplets in the intestine and liver, highlighting an important role for FIT2 in lipid droplet formation in vivo. Together these studies identify and characterize a conserved gene family that is important in the fundamental process of storing fat.


Asunto(s)
Tejido Adiposo/fisiología , Evolución Molecular , Regulación de la Expresión Génica , Hígado/metabolismo , Proteínas de la Membrana/fisiología , Células 3T3-L1/metabolismo , Adipocitos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Diabetes Mellitus Experimental/metabolismo , Humanos , Lípidos/química , Proteínas de la Membrana/química , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Triglicéridos/química , Triglicéridos/metabolismo , Pez Cebra
7.
Science ; 372(6538)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33833093

RESUMEN

DNA methylation is essential to mammalian development, and dysregulation can cause serious pathological conditions. Key enzymes responsible for deposition and removal of DNA methylation are known, but how they cooperate to regulate the methylation landscape remains a central question. Using a knockin DNA methylation reporter, we performed a genome-wide CRISPR-Cas9 screen in human embryonic stem cells to discover DNA methylation regulators. The top screen hit was an uncharacterized gene, QSER1, which proved to be a key guardian of bivalent promoters and poised enhancers of developmental genes, especially those residing in DNA methylation valleys (or canyons). We further demonstrate genetic and biochemical interactions of QSER1 and TET1, supporting their cooperation to safeguard transcriptional and developmental programs from DNMT3-mediated de novo methylation.


Asunto(s)
Metilación de ADN , ADN/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Sistemas CRISPR-Cas , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Genoma Humano , Humanos , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , ADN Metiltransferasa 3B
8.
Biol Open ; 9(6)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32580940

RESUMEN

The Gata4/5/6 sub-family of zinc finger transcription factors regulate many aspects of cardiogenesis. However, critical roles in extra-embryonic endoderm also challenge comprehensive analysis during early mouse cardiogenesis, while zebrafish models have previously relied on knockdown assays. We generated targeted deletions to disrupt each gata4/5/6 gene in zebrafish and analyzed cardiac phenotypes in single, double and triple mutants. The analysis confirmed that loss of gata5 causes cardia bifida and validated functional redundancies for gata5/6 in cardiac precursor specification. Surprisingly, we discovered that gata4 is dispensable for early zebrafish development, while loss of one gata4 allele can suppress the bifid phenotype of the gata5 mutant. The gata4 mutants eventually develop an age-dependent cardiomyopathy. By combining combinations of mutant alleles, we show that cardiac specification depends primarily on an overall dosage of gata4/5/6 alleles rather than a specific gene. We also identify a specific role for gata6 in controlling ventricle morphogenesis through regulation of both the first and second heart field, while loss of both gata4/6 eliminates the ventricle. Thus, different developmental programs are dependent on total dosage, certain pairs, or specific gata4/5/6 genes during embryonic cardiogenesis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Factor de Transcripción GATA4/genética , Factor de Transcripción GATA5/genética , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Organogénesis/genética , Pez Cebra/embriología , Alelos , Animales , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA5/metabolismo , Factor de Transcripción GATA6/metabolismo , Dosificación de Gen , Marcación de Gen , Genotipo , Morfogénesis/genética , Mutación , Fenotipo
9.
Cancer Discov ; 9(5): 662-679, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30777872

RESUMEN

Several lines of evidence link the canonical oncogene BCL6 to stress response. Here we demonstrate that BCL6 evolved in vertebrates as a component of the HSF1-driven stress response, which has been co-opted by the immune system to support germinal center formation and may have been decisive in the convergent evolution of humoral immunity in jawless and jawed vertebrates. We find that the highly conserved BTB corepressor binding site of BCL6 mediates stress adaptation across vertebrates. We demonstrate that pan-cancer cells hijack this stress tolerance mechanism to aberrantly express BCL6. Targeting the BCL6 BTB domain in cancer cells induces apoptosis and increases susceptibility to repeated doses of cytotoxic therapy. The chemosensitization effect upon BCL6 BTB inhibition is dependent on the derepression of TOX, implicating modulation of DNA repair as a downstream mechanism. Collectively, these data suggest a form of adaptive nononcogene addiction rooted in the natural selection of BCL6 during vertebrate evolution. SIGNIFICANCE: We demonstrate that HSF1 drives BCL6 expression to enable stress tolerance in vertebrates. We identify an HSF1-BCL6-TOX stress axis that is required by cancer cells to tolerate exposure to cytotoxic agents and points toward BCL6-targeted therapy as a way to more effectively kill a wide variety of solid tumors.This article is highlighted in the In This Issue feature, p. 565.


Asunto(s)
Adaptación Fisiológica/fisiología , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Estrés Fisiológico/fisiología , Animales , Apoptosis/fisiología , Linfocitos B/citología , Linfocitos B/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Centro Germinal/citología , Centro Germinal/fisiología , Factores de Transcripción del Choque Térmico/biosíntesis , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones SCID , Neoplasias/enzimología , Neoplasias/patología , Proteínas Proto-Oncogénicas c-bcl-6/genética
10.
Mol Cell Biol ; 22(5): 1317-28, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11839799

RESUMEN

We identified cDNAs encoding the Xenopus Smad proteins most closely related to mammalian Smad8, and we present a functional analysis of this activity (also referred to recently as xSmad11). Misexpression experiments indicate that xSmad8(11) regulates pathways distinct from those regulated by the closely related xSmad1. Embryos that develop from eggs depleted of xSmad8(11) mRNA fail to gastrulate; instead, at the time of gastrulation, they initiate a widespread program of apoptosis, via a CPP32/caspase 3 pathway. Embryos that avoid this fate display gastrulation defects. Activation of apoptosis is rescued by expression of xSmad8(11) but not xSmad1. Our results demonstrate an embryonic requirement for Smad8(11) activity and show that a maternally derived Smad signaling pathway is required for gastrulation and for mediating a cell survival program during early embryogenesis. We suggest that xSmad8(11) functions as part of a maternally derived mechanism shown previously by others to monitor Xenopus early embryonic cell cycles.


Asunto(s)
Apoptosis , Proteínas de Unión al ADN/metabolismo , Gástrula/fisiología , ARN Mensajero Almacenado/metabolismo , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Xenopus , Xenopus laevis/embriología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/genética , Secuencia Conservada , ADN Complementario , Proteínas de Unión al ADN/genética , Ectodermo , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Smad , Proteína Smad8 , Transactivadores/genética
11.
Biochem J ; 393(Pt 1): 311-20, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16156721

RESUMEN

In a search for binding partners to Smad8, we identified the chicken homologue of the mammalian Tid1 protein (cTid1), which is a regulator of apoptosis related to the Drosophila tumour suppressor Tid56. The cTid1 coding sequence is highly conserved with mammalian Tid1, including the DnaJ domain that interacts with Hsp70 (heat-shock protein 70). The cTid1 gene is widely expressed with transcripts enriched in the developing blood islands of the embryonic-yolk sac. We show that cTid1 can bind to other members of the Smad family and that highest binding activity occurs with the negative regulatory Smad7, through the conserved MH2 domain. This interaction can have functional relevance in vivo, since co-expression of Tid1 blocks the dorsalizing and BMP (bone morphogenetic protein)-dependent regulatory activity of Smad7 in developing Xenopus embryos. The finding that these proteins can interact suggests the potential for linking two important cell survival/apoptosis pathways.


Asunto(s)
Proteínas Aviares/metabolismo , Proteína smad7/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/genética , Sitios de Unión , Blastómeros/metabolismo , Línea Celular , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/metabolismo
12.
Nucleic Acids Res ; 33(13): 4357-67, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16061939

RESUMEN

The gata2 gene encodes a transcription factor implicated in regulating early patterning of ectoderm and mesoderm, and later in numerous cell-specific gene expression programs. Activation of the gata2 gene during embryogenesis is dependent on the bone morphogenetic protein (BMP) signaling pathway, but the mechanism for how signaling controls gene activity has not been defined. We developed an assay in Xenopus embryos to analyze regulatory sequences of the zebrafish gata2 promoter that are necessary to mediate the response to BMP signaling during embryogenesis. We show that activation is Smad dependent, since it is blocked by expression of the inhibitory Smad6. Deletion analysis identified an octamer binding site that is necessary for BMP-mediated induction, and that interacts with the POU homeodomain protein Oct-1. However, this element is not sufficient to transfer a BMP response to a heterologous promoter, requiring an additional more proximal cooperating element. Based on recent studies with other BMP-dependent promoters (Drosophila vestigial and Xenopus Xvent-2), our studies of the gata2 gene suggest that POU-domain proteins comprise a common component of the BMP signaling pathway, cooperating with Smad proteins and other transcriptional activators.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , Elementos de Respuesta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Sitios de Unión , Proteína Morfogenética Ósea 4 , Factor de Transcripción GATA2 , Factor 1 de Transcripción de Unión a Octámeros , Eliminación de Secuencia , Transducción de Señal , Proteínas Smad , Transactivadores/metabolismo , Proteínas de Xenopus , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
13.
PLoS One ; 7(10): e46844, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056483

RESUMEN

Using the zebrafish model we describe a previously unrecognized requirement for the transcription factor gata4 controlling embryonic angiogenesis. The development of a vascular plexus in the embryonic tail, the caudal hematopoietic tissue (CHT), fails in embryos depleted of gata4. Rather than forming a normal vascular plexus, the CHT of gata4 morphants remains fused, and cells in the CHT express high levels of osteogenic markers ssp1 and runx1. Definitive progenitors emerge from the hemogenic aortic endothelium, but fail to colonize the poorly vascularized CHT. We also found abnormal patterns and levels for the chemokine sdf1a in gata4 morphants, which was found to be functionally relevant, since the embryos also show defects in development of the lateral line, a mechano-sensory organ system highly dependent on a gradient of sdf1a levels. Reduction of sdf1a levels was sufficient to rescue lateral line development, circulation, and CHT morphology. The result was surprising since neither gata4 nor sdf1a is obviously expressed in the CHT. Therefore, we generated transgenic fish that conditionally express a dominant-negative gata4 isoform, and determined that gata4 function is required during gastrulation, when it is co-expressed with sdf1a in lateral mesoderm. Our study shows that the gata4 gene regulates sdf1a levels during early embryogenesis, which impacts embryonic patterning and subsequently the development of the caudal vascular plexus.


Asunto(s)
Vasos Sanguíneos/metabolismo , Quimiocina CXCL12/metabolismo , Factor de Transcripción GATA4/metabolismo , Pez Cebra/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Quimiocina CXCL12/deficiencia , Quimiocina CXCL12/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Factor de Transcripción GATA4/deficiencia , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hematopoyesis , Neovascularización Fisiológica , Transducción de Señal , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Dev Cell ; 22(3): 625-38, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22421047

RESUMEN

In mammalian embryonic stem cells, the acquisition of pluripotency is dependent on Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extraembryonic yolk syncytial layer (YSL), which produces Nodal, required for endoderm induction. We examined the genes that were regulated by Nanog-like and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which, in turn, specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extraembryonic tissue required for endoderm induction.


Asunto(s)
Endodermo/metabolismo , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos de Señalización Nodal/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Proteína Homeótica Nanog , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
Chem Biol Drug Des ; 73(3): 339-45, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19207470

RESUMEN

We synthesized 2-substituted 2H-chromene derivatives from salicylaldehyde using potassium vinylic borates in the presence of secondary amines. Our goal was to generate novel compounds that might modulate transforming growth factor-beta signaling, based on limited rational design. Potassium vinyl trifluoroborates react with salicylaldehydes at 80 degrees C in the presence of a secondary amine and produce 2-substituted 2H-chromene derivatives with a 70-90% yield. A small library of these compounds, predicted to potentially interact with transforming growth factor-beta receptors, was screened for bioactivity in living zebrafish embryos. We found that the related compounds differentially affect development, and demonstrate one compound that produces severe body axis alterations in early embryogenesis and at lower doses affects specifically cardiovascular development. This compound modulates specifically a Smad-independent transforming growth factor-beta-regulated mitogen-activated protein kinase pathway, namely p-SAPK/JNK. These compounds, as suggested by our biological assays, may prove useful to manipulate developmental programs and develop therapeutic tools.


Asunto(s)
Benzopiranos/farmacología , Receptores de Factores de Crecimiento Transformadores beta/agonistas , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Pez Cebra/embriología , Animales , Benzopiranos/síntesis química , Benzopiranos/química , Evaluación Preclínica de Medicamentos/métodos , Desarrollo Embrionario/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas
16.
Blood ; 109(2): 516-23, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16990609

RESUMEN

Bone morphogenetic protein (BMP) signaling is an important regulator of hematovascular development. However, the progenitor population that responds to BMP signaling is undefined, and the relative role of downstream mediators including Smad1 is unclear. We find that Smad1 shows a distinctive expression profile as embryonic stem (ES) cells undergo differentiation in the embryoid body (EB) system, with peak levels in cell populations enriched for the hemangioblast. To test the functional relevance of this observation, we generated an ES cell line that allows temporal control of ectopic Smad1 expression. Continuous expression of Smad1 from day 2 of EB culture does not disturb hematopoiesis, according to colony assays. In contrast, a pulse of Smad1 expression exclusively between day 2 and day 2.25 expands the population of progenitors for primitive erythroblasts and other hematopoietic lineages. This effect correlates with increased levels of transcripts encoding markers for the hemangioblast, including Runx1, Scl, and Gata2. Indeed, the pulse of Smad1 induction also expands the blast colony-forming cell (BL-CFC) population at a level that is fully sufficient to explain subsequent increases in hematopoiesis. Our data demonstrate that Smad1 expression is sufficient to expand the number of cells that commit to hemangioblast fate.


Asunto(s)
Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteína Smad1/fisiología , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Fibroblastos/citología , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/fisiología , Proteína Smad1/biosíntesis , Proteína Smad1/genética , Factores de Tiempo
17.
Blood ; 108(9): 2989-97, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16835375

RESUMEN

STAT5 regulates definitive (adult stage) erythropoiesis through its ability to transduce signals from the erythropoietin receptor. A function for STAT-dependent signaling during primitive (embryonic) erythropoiesis has not been analyzed. We tested this in the Xenopus system, because STAT5 is expressed at the right time and place to regulate development of the embryonic primitive ventral blood island. Depletion of STAT5 activity results in delayed accumulation of the first globin-expressing cells, indicating that the gene does regulate primitive erythropoiesis. Our results suggest that in this context STAT5 functions as a repressor, since forced expression of an activator isoform blocks erythropoiesis, while embryos expressing a repressor isoform develop normally. The erythroid phenotype caused by the activator isoform of STAT5 resembles that caused by overexpression of fibroblast growth factor (FGF). We show that STAT5 isoforms can function epistatic to FGF and can be phosphorylated in response to hyperactivated FGF signaling in Xenopus embryos. Therefore, our data indicate that STAT5 functions in both primitive and definitive erythropoiesis, but by different mechanisms.


Asunto(s)
Eritropoyesis/fisiología , Factor de Transcripción STAT5/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Xenopus/genética , Animales , Embrión no Mamífero , Desarrollo Embrionario/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT5/metabolismo
18.
J Biol Chem ; 278(7): 4705-12, 2003 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-12468531

RESUMEN

Hepatocyte growth factor (HGF) is released in response to myocardial infarction and may play a role in regulating cardiac remodeling. Recently, HGF was found to inhibit the apoptosis of cardiac muscle cells. Because GATA-4 can induce cell survival, the effects of HGF on GATA-4 activity were investigated. Treatment of HL-1 cells or primary adult rat cardiac myocytes with HGF, at concentrations that can be detected in the human serum after myocardial infarction, rapidly enhances GATA-4 DNA-binding activity. The enhanced DNA-binding activity is associated with the phosphorylation of GATA-4. HGF-induced phosphorylation and activation of GATA-4 is abolished by MEK inhibitors or the mutation of the ERK phosphorylation site (S105A), suggesting that HGF activates GATA-4 via MEK-ERK pathway-dependent phosphorylation. HGF enhances the expression of anti-apoptotic Bcl-x(L), and this is blocked by dominant negative mutants of MEK or GATA-4. Forced expression of wild-type GATA-4, but not the GATA-4 mutant (S105A) increases the expression of Bcl-x(L). Furthermore, expression of the GATA-4 mutant (S105A) suppresses HGF-mediated protection of cells against daunorubicin-induced apoptosis. These results demonstrate that HGF protects cardiac muscle cells against apoptosis via a signaling pathway involving MEK/ERK-dependent phosphorylation of GATA-4.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Factor de Transcripción GATA4 , Factor de Crecimiento de Hepatocito/farmacología , Sistema de Señalización de MAP Quinasas , Masculino , Miocitos Cardíacos/citología , Fosforilación , Ratas , Ratas Endogámicas Lew , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA