Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(36): e2201115, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35315233

RESUMEN

Granular hydrogels are an exciting class of microporous and injectable biomaterials that are being explored for many biomedical applications, including regenerative medicine, 3D printing, and drug delivery. Granular hydrogels often possess low mechanical moduli and lack structural integrity due to weak physical interactions between microgels. This has been addressed through covalent inter-particle crosslinking; however, covalent crosslinking often occurs through temporal enzymatic methods or photoinitiated reactions, which may limit injectability and material processing. To address this, a hyaluronic acid (HA) granular hydrogel is developed with dynamic covalent (hydrazone) inter-particle crosslinks. Extrusion fragmentation is used to fabricate microgels from photocrosslinkable norbornene-modified HA, additionally modified with either aldehyde or hydrazide groups. Aldehyde and hydrazide-containing microgels are mixed and jammed to form adhesive granular hydrogels. These granular hydrogels possess enhanced mechanical integrity and shape stability over controls due to the covalent inter-particle bonds, while maintaining injectability due to the dynamic hydrazone bonds. The adhesive granular hydrogels are applied to 3D printing, which allows the printing of structures that are stable without any further post-processing. Additionally, the authors demonstrate that adhesive granular hydrogels allow for cell invasion in vitro. Overall, this work demonstrates the use of dynamic covalent inter-particle crosslinking to enhance injectable granular hydrogels.


Asunto(s)
Hidrogeles , Microgeles , Adhesivos , Aldehídos , Ácido Hialurónico/química , Hidrazinas , Hidrazonas , Hidrogeles/química
2.
Soft Matter ; 17(15): 4151-4160, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33881035

RESUMEN

Sedimentation in active fluids has come into focus due to the ubiquity of swimming micro-organisms in natural and industrial processes. Here, we investigate sedimentation dynamics of passive particles in a fluid as a function of bacteria E. coli concentration. Results show that the presence of swimming bacteria significantly reduces the speed of the sedimentation front even in the dilute regime, in which the sedimentation speed is expected to be independent of particle concentration. Furthermore, bacteria increase the dispersion of the passive particles, which determines the width of the sedimentation front. For short times, particle sedimentation speed has a linear dependence on bacterial concentration. Mean square displacement data shows, however, that bacterial activity decays over long experimental (sedimentation) times. An advection-diffusion equation coupled to bacteria population dynamics seems to capture concentration profiles relatively well. A single parameter, the ratio of single particle speed to the bacteria flow speed can be used to predict front sedimentation speed.


Asunto(s)
Escherichia coli , Difusión , Fenómenos Físicos
3.
Soft Matter ; 14(27): 5588-5594, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29882572

RESUMEN

We report on the collective behavior of active particles in which energy is continuously supplied to rotational degrees of freedom. The active spinners are 3D-printed disks, 1 cm in diameter, that have an embedded fan-like structure, such that a sub-levitating up-flow of air forces them to spin. Single spinners exhibit Brownian motion with a narrow Gaussian velocity distribution function, P(v), for translational motion. We study the evolution of P(v) as the packing fraction and the average single particle spin speeds are varied. The interparticle hydrodynamic interaction is negligible, and the dynamics is dominated by hyperelastic collisions and dissipative forces. As expected for nonequilibrium systems, P(v) for a collection of many spinners deviates from Gaussian behavior. However, unlike translationally active systems, phase separation is not observed, and the system remains spatially homogeneous. We then search for a near-equilibrium counterpart for our active spinners by measuring the equation of state. Interestingly, it agrees well with a hard-sphere model, despite the dissipative nature of the single particle dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA