Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 17(28): 18590-9, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26113151

RESUMEN

A multilayered semiconductor sensitizer structure composed of three differently sized CdSe quantum rods (QRs), labeled as Q530, Q575, Q590, were prepared and deposited on the surface of mesoporous TiO2 nanoparticles by electrophoretic deposition (EPD) for photovoltaic applications. By varying the arrangement of layers as well as the time of EPD, the photoconversion efficiency was improved from 2.0% with the single layer of CdSe QRs (TiO2/Q590/ZnS) to 2.9% for multilayers (TiO2/Q590Q575/ZnS). The optimal EPD time was shorter for the multilayered structures. The effect of CdS quantum dots (QDs) deposited by successive ionic layer adsorption and reaction (SILAR) was also investigated. The addition of CdS QDs resulted in the enhancement of efficiency to 4.1% for the configuration (TiO2/CdS/Q590Q575/ZnS), due to increased photocurrent and photovoltage. Based on detailed structural, optical, and photoelectrical studies, the increased photocurrent is attributed to broadened light absorption while the increased voltage is due to a shift in the relevant energy levels.

2.
Dalton Trans ; 50(46): 16923-16928, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34668500

RESUMEN

Nanostructured noble metals are of great interest because of their tunable optical and electronic properties. However, the green synthesis of anisotropic nanostructures with a defined geometry by the systematic nanoassembly of particles into specific shape, size, and crystallographic facets still faces major challenges. The present work aimed to establish an environmentally friendly methodology for synthesizing gold-based anisotropic nanostructures using starch-capped bimetallic silver/gold nanoparticles as seeds and hydrogen peroxide as a reducing agent.

3.
Biomed Phys Eng Express ; 6(4): 042001, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-33444260

RESUMEN

The toxicity of alloying elements in magnesium alloys used for biomedical purposes is an interesting and innovative subject, due to the great technological advances that would result from their application in medical devices (MDs) in traumatology. Recently promising results have been published regarding the rates of degradation and mechanical integrity that can support Mg alloys; this has led to an interest in understanding the toxicological features of these emerging biomaterials. The growing interest of different segments of the MD market has increased the determination of different research groups to clarify the behavior of alloying elements in vivo. This review covers the influence of the alloying elements on the body, the toxicity of the elements in Mg-Zn-Ca, as well as the mechanical properties, degradation, processes of obtaining the alloy, medical approaches and future perspectives on the use of the Mg in the manufacture of MDs for various medical applications.


Asunto(s)
Aleaciones , Materiales Biocompatibles/química , Calcio/química , Magnesio/química , Zinc/química , Implantes Absorbibles , Animales , Corrosión , Módulo de Elasticidad , Humanos , Ensayo de Materiales , Metales/química , Ratones , Polvos , Ratas , Estrés Mecánico
4.
Int J Nanomedicine ; 14: 2171-2190, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30988615

RESUMEN

BACKGROUND AND AIM: Bimetallic silver/gold nanosystems are expected to significantly improve therapeutic efficacy compared to their monometallic counterparts by maintaining the general biocompatibility of gold nanoparticles (AuNPs) while, at the same time, decreasing the relatively high toxicity of silver nanoparticles (AgNPs) toward healthy human cells. Thus, the aim of this research was to establish a highly reproducible one-pot green synthesis of colloidal AuNPs and bimetallic Ag/Au alloy nanoparticles (NPs; Ag/AuNPs) using starch as reducing and capping agent. METHODS: The optical properties, high reproducibility, stability and particle size distribution of the colloidal NPs were analyzed by ultraviolet (UV)-visible spectroscopy, dynamic light scattering (DLS) and ζ-potential. The presence of starch as capping agent was determined by Fourier transform infrared (FT-IR) spectroscopy. The structural properties were studied by X-ray diffraction (XRD). Transmission electron microscopy (TEM) imaging was done to determine the morphology and size of the nanostructures. The chemical composition of the nanomaterials was determined by energy-dispersive X-ray spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. To further study the biomedical applications of the synthesized nanostructures, antibacterial studies against multidrug-resistant (MDR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) were conducted. In addition, the NPs were added to the growth media of human dermal fibroblast (HDF) and human melanoma cells to show their cytocompatibility and cytotoxicity, respectively, over a 3-day experiment. RESULTS: UV-visible spectroscopy confirmed the highly reproducible green synthesis of colloidal AuNPs and Ag/AuNPs. The NPs showed a face-centered cubic crystal structure and an icosahedral shape with mean particle sizes of 28.5 and 9.7 nm for AuNPs and Ag/AuNPs, respectively. The antibacterial studies of the NPs against antibiotic-resistant bacterial strains presented a dose-dependent antimicrobial behavior. Furthermore, the NPs showed cytocompat-ibility towards HDF, but a dose-dependent anticancer effect was found when human melanoma cells were grown in presence of different NP concentrations for 72 hours. CONCLUSION: In this study, mono- and bimetallic NPs were synthesized for the first time using a highly reproducible, environmentally friendly, cost-effective and quick method and were successfully characterized and tested for several anti-infection and anticancer biomedical applications.


Asunto(s)
Antibacterianos/farmacología , Oro/química , Nanopartículas del Metal/química , Plata/química , Almidón/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Coloides/síntesis química , Coloides/química , Recuento de Colonia Microbiana , Dispersión Dinámica de Luz , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/ultraestructura , Fibroblastos/efectos de los fármacos , Humanos , Hidrodinámica , Nanopartículas del Metal/ultraestructura , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Reproducibilidad de los Resultados , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Difracción de Rayos X
5.
Nanoscale ; 7(22): 10249-58, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25990708

RESUMEN

This work presents the design of substrates for Surface Enhanced Raman Scattering (SERS) using star-like gold nanoparticles which were synthesized using a wet chemical method and functionalized with 1-dodecanethiol. This molecule allowed us to obtain a spacing of ∼2.6 nm among gold stars, which promoted the generation of SERS hotspots for single molecule detection. The gold nanoparticles were deposited on silicon substrates or on gold coated silicon substrates by using the Langmuir-Blodgett method which permitted the zeptomole detection of Rhodamine B (total moles per laser spot area). The Raman enhancement factor (EF) achieved for this level of detection was 10(12), and was obtained on the SERS substrate fabricated with the configuration: Si/Au film/Au nanoparticles. Raman spectra of the molecules TWEEN 20 and p-terphenyl were also measured in order to elucidate the effect of the molecule's length on the enhancement factor. According to these results, our SERS substrates without the gold film are useful for a minimum detection level of ∼10(-14) moles of analytes with sizes equal to or less than 1.3 nm and ∼10(-18) moles of analytes with the gold film (total moles per sample).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA