Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606947

RESUMEN

Natural variation in trichome pattern (amount and distribution) is prominent among populations of many angiosperms. However, the degree of parallelism in the genetic mechanisms underlying this diversity and its environmental drivers in different species remain unclear. To address these questions, we analyzed the genomic and environmental bases of leaf trichome pattern diversity in Cardamine hirsuta, a relative of Arabidopsis (Arabidopsis thaliana). We characterized 123 wild accessions for their genomic diversity, leaf trichome patterns at different temperatures, and environmental adjustments. Nucleotide diversities and biogeographical distribution models identified two major genetic lineages with distinct demographic and adaptive histories. Additionally, C. hirsuta showed substantial variation in trichome pattern and plasticity to temperature. Trichome amount in C. hirsuta correlated positively with spring precipitation but negatively with temperature, which is opposite to climatic patterns in A. thaliana. Contrastingly, genetic analysis of C. hirsuta glabrous accessions indicated that, like for A. thaliana, glabrousness is caused by null mutations in ChGLABRA1 (ChGL1). Phenotypic genome-wide association studies (GWAS) further identified a ChGL1 haplogroup associated with low trichome density and ChGL1 expression. Therefore, a ChGL1 series of null and partial loss-of-function alleles accounts for the parallel evolution of leaf trichome pattern in C. hirsuta and A. thaliana. Finally, GWAS also detected other candidate genes (e.g. ChETC3, ChCLE17) that might affect trichome pattern. Accordingly, the evolution of this trait in C. hirsuta and A. thaliana shows partially conserved genetic mechanisms but is likely involved in adaptation to different environments.

2.
Plant Cell ; 33(3): 548-565, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955486

RESUMEN

Both inter- and intra-specific diversity has been described for trichome patterning in fruits, which is presumably involved in plant adaptation. However, the mechanisms underlying this developmental trait have been hardly addressed. Here we examined natural populations of Arabidopsis (Arabidopsis thaliana) that develop trichomes in fruits and pedicels, phenotypes previously not reported in the Arabidopsis genus. Genetic analyses identified five loci, MALAMBRUNO 1-5 (MAU1-5), with MAU2, MAU3, and MAU5 showing strong epistatic interactions that are necessary and sufficient to display these traits. Functional characterization of these three loci revealed cis-regulatory mutations in TRICHOMELESS1 and TRIPTYCHON, as well as a structural mutation in GLABRA1. Therefore, the multiple mechanisms controlled by three MYB transcription factors of the core regulatory network for trichome patterning have jointly been modulated to trigger trichome development in fruits. Furthermore, analyses of worldwide accessions showed that these traits and mutations only occur in a highly differentiated relict lineage from the Iberian Peninsula. In addition, these traits and alleles were associated with low spring precipitation, which suggests that trichome development in fruits and pedicels might be involved in climatic adaptation. Thus, we show that the combination of synergistic mutations in a gene regulatory circuit has driven evolutionary innovations in fruit trichome patterning in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Frutas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética , Proteínas Proto-Oncogénicas c-myb/genética
3.
Am J Hum Genet ; 104(4): 651-664, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929736

RESUMEN

Pheochromocytomas and paragangliomas (PPGLs) provide some of the clearest genetic evidence for the critical role of metabolism in the tumorigenesis process. Approximately 40% of PPGLs are caused by driver germline mutations in 16 known susceptibility genes, and approximately half of these genes encode members of the tricarboxylic acid (TCA) cycle. Taking as a starting point the involvement of the TCA cycle in PPGL development, we aimed to identify unreported mutations that occurred in genes involved in this key metabolic pathway and that could explain the phenotypes of additional individuals who lack mutations in known susceptibility genes. To accomplish this, we applied a targeted sequencing of 37 TCA-cycle-related genes to DNA from 104 PPGL-affected individuals with no mutations in the major known predisposing genes. We also performed omics-based analyses, TCA-related metabolite determination, and 13C5-glutamate labeling assays. We identified five germline variants affecting DLST in eight unrelated individuals (∼7%); all except one were diagnosed with multiple PPGLs. A recurrent variant, c.1121G>A (p.Gly374Glu), found in four of the eight individuals triggered accumulation of 2-hydroxyglutarate, both in tumors and in a heterologous cell-based assay designed to functionally evaluate DLST variants. p.Gly374Glu-DLST tumors exhibited loss of heterozygosity, and their methylation and expression profiles are similar to those of EPAS1-mutated PPGLs; this similarity suggests a link between DLST disruption and pseudohypoxia. Moreover, we found positive DLST immunostaining exclusively in tumors carrying TCA-cycle or EPAS1 mutations. In summary, this study reveals DLST as a PPGL-susceptibility gene and further strengthens the relevance of the TCA cycle in PPGL development.


Asunto(s)
Aciltransferasas/genética , Neoplasias de las Glándulas Suprarrenales/genética , Mutación de Línea Germinal , Paraganglioma/genética , Feocromocitoma/genética , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis , Dominio Catalítico , Ciclo del Ácido Cítrico , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pérdida de Heterocigocidad , Masculino , Persona de Mediana Edad
4.
Int J Cancer ; 146(2): 521-530, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31403184

RESUMEN

It is critical to identify biomarkers and functional networks associated with aggressive thyroid cancer to anticipate disease progression and facilitate personalized patient management. We performed miRNome sequencing of 46 thyroid tumors enriched with advanced disease patients with a median follow-up of 96 months. MiRNome profiles correlated with tumor-specific histopathological and molecular features, such as stromal cell infiltration and tumor driver mutation. Differential expression analysis revealed a consistent hsa-miR-139-5p downexpression in primary carcinomas from patients with recurrent/metastatic disease compared to disease-free patients, sustained in paired local metastases and validated in publicly available thyroid cancer series. Exogenous expression of hsa-miR-139-5p significantly reduced migration and proliferation of anaplastic thyroid cancer cells. Proteomic analysis indicated RICTOR, SMAD2/3 and HNRNPF as putative hsa-miR-139-5p targets in our cell system. Abundance of HNRNPF mRNA, encoding an alternative splicing factor involved in cryptic exon inclusion/exclusion, inversely correlated with hsa-miR-139-5p expression in human tumors. RNA sequencing analysis revealed 174 splicing events differentially regulated upon HNRNPF repression in our cell system, affecting genes involved in RTK/RAS/MAPK and PI3K/AKT/MTOR signaling cascades among others. These results point at the hsa-miR-139-5p/HNRNPF axis as a novel regulatory mechanism associated with the modulation of major thyroid cancer signaling pathways and tumor virulence.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , MicroARNs/metabolismo , Neoplasias de la Tiroides/genética , Adulto , Anciano , Anciano de 80 o más Años , Empalme Alternativo/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Transducción de Señal/genética , Tasa de Supervivencia , Glándula Tiroides/patología , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología
5.
Plant Physiol ; 177(3): 1234-1253, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29853599

RESUMEN

Seedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the SEED DEVELOPMENT INHIBITOR (SDI) locus is the usual source of seedlessness in commercial grapevine (Vitis vinifera) cultivars, the underlying sdi mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation. Quantitative genetics and fine-mapping in two 'Crimson Seedless'-derived F1 mapping populations confirmed the major effect of the SDI locus and delimited the sdi mutation to a 323-kb region on chromosome 18. RNA-sequencing comparing seed traces of seedless and seeds of seeded F1 individuals identified processes triggered during sdi-determined seed abortion, including the activation of salicylic acid-dependent autoimmunity. The RNA-sequencing data set was investigated for candidate genes, and while no evidence for causal cis-acting regulatory mutations was detected, deleterious nucleotide changes in coding sequences of the seedless haplotype were predicted in two genes within the sdi fine-mapping interval. Targeted resequencing of the two genes in a collection of 124 grapevine cultivars showed that only the point variation causing the arginine-197-to-leucine substitution in the seed morphogenesis regulator gene AGAMOUS-LIKE11 (VviAGL11) was fully linked with stenospermocarpy. The concurrent postzygotic variation identified for this missense polymorphism and seedlessness phenotype in seeded somatic variants of the original stenospermocarpic cultivar supports a causal effect. We postulate that seed abortion caused by this amino acid substitution in VviAGL11 is the major cause of seedlessness in cultivated grapevine. This information can be exploited to boost seedless grape breeding.


Asunto(s)
Proteínas de Dominio MADS/genética , Mutación Missense , Proteínas de Plantas/genética , Semillas/genética , Vitis/fisiología , Sustitución de Aminoácidos , Mapeo Cromosómico , Perfilación de la Expresión Génica , Sitios de Carácter Cuantitativo , Ácido Salicílico/metabolismo , Semillas/crecimiento & desarrollo , Vitis/genética
6.
Genet Med ; 20(12): 1644-1651, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29740169

RESUMEN

PURPOSE: The high percentage of patients carrying germline mutations makes pheochromocytomas/paragangliomas the most heritable of all tumors. However, there are still cases unexplained by mutations in the known genes. We aimed to identify the genetic cause of disease in patients strongly suspected of having hereditary tumors. METHODS: Whole-exome sequencing was applied to the germlines of a parent-proband trio. Genome-wide methylome analysis, RNA-seq, CRISPR/Cas9 gene editing, and targeted sequencing were also performed. RESULTS: We identified a novel de novo germline mutation in DNMT3A, affecting a highly conserved residue located close to the aromatic cage that binds to trimethylated histone H3. DNMT3A-mutated tumors exhibited significant hypermethylation of homeobox-containing genes, suggesting an activating role of the mutation. CRISPR/Cas9-mediated knock-in in HeLa cells led to global changes in methylation, providing evidence of the DNMT3A-altered function. Targeted sequencing revealed subclonal somatic mutations in six additional paragangliomas. Finally, a second germline DNMT3A mutation, also causing global tumor DNA hypermethylation, was found in a patient with a family history of pheochromocytoma. CONCLUSION: Our findings suggest that DNMT3A may be a susceptibility gene for paragangliomas and, if confirmed in future studies, would represent the first example of gain-of-function mutations affecting a DNA methyltransferase gene involved in cancer predisposition.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias de las Glándulas Suprarrenales/patología , Adulto , Sistemas CRISPR-Cas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Femenino , Mutación con Ganancia de Función , Predisposición Genética a la Enfermedad , Genotipo , Mutación de Línea Germinal/genética , Humanos , Masculino , Paraganglioma/patología , Feocromocitoma/patología , Secuenciación del Exoma
7.
Plant Physiol ; 175(2): 786-801, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28811336

RESUMEN

Grape (Vitis vinifera) color somatic variants that can be used to develop new grapevine cultivars occasionally appear associated with deletion events of uncertain origin. To understand the mutational mechanisms generating somatic structural variation in grapevine, we compared the Tempranillo Blanco (TB) white berry somatic variant with its black berry ancestor, Tempranillo Tinto. Whole-genome sequencing uncovered a catastrophic genome rearrangement in TB that caused the hemizygous deletion of 313 genes, including the loss of the functional copy for the MYB transcription factors required for anthocyanin pigmentation in the berry skin. Loss of heterozygosity and decreased copy number delimited interspersed monosomic and disomic regions in the right arm of linkage groups 2 and 5. At least 11 validated clustered breakpoints involving intrachromosomal and interchromosomal translocations between three linkage groups flanked the deleted fragments, which, according to segregation analyses, are phased in a single copy of each of the affected chromosomes. These hallmarks, along with the lack of homology between breakpoint joins and the randomness of the order and orientation of the rearranged fragments, are all consistent with a chromothripsis-like pattern generated after chromosome breakage and illegitimate rejoining. This unbalanced genome reshuffling has additional consequences in reproductive development. In TB, lack of sexual transmission of rearranged chromosomes associates with low gamete viability, which compromises fruit set and decreases fruit production. Our findings show that catastrophic genome rearrangements arise spontaneously and stabilize during plant somatic growth. These dramatic rearrangements generate new interesting phenotypes that can be selected for the improvement of vegetatively propagated plant species.


Asunto(s)
Antocianinas/metabolismo , Reordenamiento Génico , Genoma de Planta/genética , Pérdida de Heterocigocidad/genética , Vitis/genética , Color , Frutas/genética , Frutas/fisiología , Ligamiento Genético , Mutación , Fenotipo , Pigmentación , Vitis/fisiología
9.
Bioessays ; 37(3): 237-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25545039

RESUMEN

Nowadays, in the Internet databases era, certain knowledge is being progressively lost. This knowledge, which we feel is essential and should be acquired through education, is the understanding of how the pioneer researchers faced major questions in their field and made their discoveries.


Asunto(s)
Biología Evolutiva/educación , Animales , Bibliometría , Caenorhabditis elegans/citología , Linaje de la Célula , Biología Evolutiva/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos
10.
BMC Genomics ; 17: 74, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26801623

RESUMEN

BACKGROUND: The two-spotted spider mite, Tetranychus urticae, is an extreme generalist plant pest. Even though mites can feed on many plant species, local mite populations form host races that do not perform equally well on all potential hosts. An acquisition of the ability to evade plant defenses is fundamental for mite's ability to use a particular plant as a host. Thus, understanding the interactions between the plant and mites with different host adaptation status allows the identification of functional plant defenses and ways mites can evolve to avoid them. RESULTS: The grapevine genome-wide transcriptional responses to spider mite strains that are non-adapted and adapted to grapevine as a host were examined. Comparative transcriptome analysis of grapevine responses to these mite strains identified the existence of weak responses induced by the feeding of the non-adapted strain. In contrast, strong but ineffective induced defenses were triggered upon feeding of the adapted strain. A comparative meta-analysis of Arabidopsis, tomato and grapevine responses to mite feeding identified a core of 36 highly conserved genes involved in the perception, regulation and metabolism that were commonly induced in all three species by mite herbivory. CONCLUSIONS: This study describes the genome-wide grapevine transcriptional responses to herbivory of mite strains that differ in their ability to use grapevine as a host. It raises hypotheses whose testing will lead to our understanding of grapevine defenses and mite adaptations to them.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Tetranychidae/fisiología , Transcriptoma/genética , Vitis/genética , Vitis/parasitología , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Solanum lycopersicum/genética , Solanum lycopersicum/parasitología
11.
J Exp Bot ; 67(1): 259-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26454283

RESUMEN

Seedlessness is a relevant trait in grapevine cultivars intended for fresh consumption or raisin production. Previous DNA marker analysis indicated that Corinto bianco (CB) is a parthenocarpic somatic variant of the seeded cultivar Pedro Ximenes (PX). This study compared both variant lines to determine the basis of this parthenocarpic phenotype. At maturity, CB seedless berries were 6-fold smaller than PX berries. The macrogametophyte was absent from CB ovules, and CB was also pollen sterile. Occasionally, one seed developed in 1.6% of CB berries. Microsatellite genotyping and flow cytometry analyses of seedlings generated from these seeds showed that most CB viable seeds were formed by fertilization of unreduced gametes generated by meiotic diplospory, a process that has not been described previously in grapevine. Microarray and RNA-sequencing analyses identified 1958 genes that were differentially expressed between CB and PX developing flowers. Genes downregulated in CB were enriched in gametophyte-preferentially expressed transcripts, indicating the absence of regular post-meiotic germline development in CB. RNA-sequencing was also used for genetic variant calling and 14 single-nucleotide polymorphisms distinguishing the CB and PX variant lines were detected. Among these, CB-specific polymorphisms were considered as candidate parthenocarpy-responsible mutations, including a putative deleterious substitution in a HAL2-like protein. Collectively, these results revealed that the absence of a mature macrogametophyte, probably due to meiosis arrest, coupled with a process of fertilization-independent fruit growth, caused parthenocarpy in CB. This study provides a number of grapevine parthenocarpy-responsible candidate genes and shows how genomic approaches can shed light on the genetic origin of woody crop somatic variants.


Asunto(s)
Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Transcriptoma , Vitis/genética , Flores/genética , Frutas/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ARN , Vitis/crecimiento & desarrollo , Vitis/metabolismo
12.
Theor Appl Genet ; 129(2): 227-42, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26536891

RESUMEN

KEY MESSAGE: A set of SNP markers associated to bunch compactness and related traits were identified in grapevine. ABSTRACT: Bunch compactness plays an important role in the sanitary status and perceived quality of table and wine grapes, being influenced by cultural practices and by environmental and genetic factors, which are mostly unknown. In this work, we took advantage of genetic, genomic and bioinformatic advances to analyze part of its molecular basis through a combination of transcriptomic and association analyses. Results from different transcriptomic comparisons between loose and compact grapevine clones were analyzed to select a set of candidate genes likely involved in the observed variation for bunch compactness. Up to 183 genes were sequenced in a grapevine collection, and 7032 single nucleotide polymorphisms (SNPs) were detected in more than 100 varieties with a frequency of the minor allele over 5%. They were used to test their association in three consecutive seasons with bunch compactness and two of its most influencing factors: total berry number and length of the first ramification of the rachis. Only one SNP was associated with berry number in two seasons, suggesting the high sensitiveness of this trait to seasonal environmental changes. On the other hand, we found a set of SNPs associated with both the first ramification length and bunch compactness in various seasons, in several genes which had not previously related to bunch compactness or bunch compactness-related traits. They are proposed as interesting candidates for further functional analyses aimed to verify the results obtained in this work, as a previous step to their inclusion in marker-assisted selection strategies.


Asunto(s)
Frutas/crecimiento & desarrollo , Genes de Plantas , Polimorfismo de Nucleótido Simple , Vitis/genética , Alelos , ADN de Plantas/genética , Modelos Genéticos , Fenotipo , Carácter Cuantitativo Heredable , Análisis de Secuencia de ADN , Transcriptoma
13.
BMC Plant Biol ; 15: 253, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26499326

RESUMEN

BACKGROUND: Domestication and selection of Vitis vinifera L. for table and wine grapes has led to a large level of berry size diversity in current grapevine cultivars. Identifying the genetic basis for this natural variation is paramount both for breeding programs and for elucidating which genes contributed to crop evolution during domestication and selection processes. The gene VvNAC26, which encodes a NAC domain-containing transcription factor, has been related to the early development of grapevine flowers and berries. It was selected as candidate gene for an association study to elucidate its possible participation in the natural variation of reproductive traits in cultivated grapevine. METHODS: A grapevine collection of 114 varieties was characterized during three consecutive seasons for different berry and bunch traits. The promoter and coding regions of VvNAC26 gene (VIT_01s0026g02710) were sequenced in all the varieties of the collection, and the existing polymorphisms (SNP and INDEL) were detected. The corresponding haplotypes were inferred and used for a phylogenetic analysis. The possible associations between genotypic and phenotypic data were analyzed independently for each season data, using different models and significance thresholds. RESULTS: A total of 30 non-rare polymorphisms were detected in the VvNAC26 sequence, and 26 different haplotypes were inferred. Phylogenetic analysis revealed their clustering in two major haplogroups with marked phenotypic differences in berry size between varieties harboring haplogroup-specific alleles. After correcting the statistical models for the effect of the population genetic stratification, we found a set of polymorphisms associated with berry size explaining between 8.4 and 21.7% (R(2)) of trait variance, including those generating the differentiation between both haplogroups. Haplotypes built from only three polymorphisms (minihaplotypes) were also associated with this trait (R(2): 17.5 - 26.6%), supporting the involvement of this gene in the natural variation for berry size. CONCLUSIONS: Our results suggest the participation of VvNAC26 in the determination of the grape berry final size. Different VvNAC26 polymorphisms and their combination showed to be associated with different features of the fruit. The phylogenetic relationships between the VvNAC26 haplotypes and the association results indicate that this nucleotide variation may have contributed to the differentiation between table and wine grapes.


Asunto(s)
Frutas/anatomía & histología , Frutas/genética , Genes de Plantas , Estudios de Asociación Genética , Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , Vitis/genética , Secuencia de Bases , Cloroplastos/genética , Marcadores Genéticos , Genética de Población , Datos de Secuencia Molecular , Tamaño de los Órganos , Fenotipo , Filogenia
14.
BMC Ecol Evol ; 24(1): 56, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702598

RESUMEN

BACKGROUND: Despite its implications for population dynamics and evolution, the relationship between genetic and phenotypic variation in wild populations remains unclear. Here, we estimated variation and plasticity in life-history traits and fitness of the annual plant Arabidopsis thaliana in two common garden experiments that differed in environmental conditions. We used up to 306 maternal inbred lines from six Iberian populations characterized by low and high genotypic (based on whole-genome sequences) and ecological (vegetation type) diversity. RESULTS: Low and high genotypic and ecological diversity was found in edge and core Iberian environments, respectively. Given that selection is expected to be stronger in edge environments and that ecological diversity may enhance both phenotypic variation and plasticity, we expected genotypic diversity to be positively associated with phenotypic variation and plasticity. However, maternal lines, irrespective of the genotypic and ecological diversity of their population of origin, exhibited a substantial amount of phenotypic variation and plasticity for all traits. Furthermore, all populations harbored maternal lines with canalization (robustness) or sensitivity in response to harsher environmental conditions in one of the two experiments. CONCLUSIONS: Overall, we conclude that the environmental attributes of each population probably determine their genotypic diversity, but all populations maintain substantial phenotypic variation and plasticity for all traits, which represents an asset to endure in changing environments.


Asunto(s)
Arabidopsis , Aptitud Genética , Genotipo , Rasgos de la Historia de Vida , Arabidopsis/genética , Arabidopsis/fisiología , España , Variación Genética , Fenotipo , Variación Biológica Poblacional
15.
Plant Cell Physiol ; 54(7): 1200-16, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23659918

RESUMEN

Berry organoleptic properties are highly influenced by ripening environmental conditions. In this study, we used grapevine fruiting cuttings to follow berry ripening under different controlled conditions of temperature and irradiation intensity. Berries ripened at higher temperatures showed reduced anthocyanin accumulation and hastened ripening, leading to a characteristic drop in malic acid and total acidity. The GrapeGen GeneChip® combined with a newly developed GrapeGen 12Xv1 MapMan version were utilized for the functional analysis of berry transcriptomic differences after 2 week treatments from veraison onset. These analyses revealed the establishment of a thermotolerance response in berries under high temperatures marked by the induction of heat shock protein (HSP) chaperones and the repression of transmembrane transporter-encoding transcripts. The thermotolerance response was coincident with up-regulation of ERF subfamily transcription factors and increased ABA levels, suggesting their participation in the maintenance of the acclimation response. Lower expression of amino acid transporter-encoding transcripts at high temperature correlated with balanced amino acid content, suggesting a transcriptional compensation of temperature effects on protein and membrane stability to allow for completion of berry ripening. In contrast, the lower accumulation of anthocyanins and higher malate metabolization measured under high temperature might partly result from imbalance in the expression and function of their specific transmembrane transporters and expression changes in genes involved in their metabolic pathways. These results open up new views to improve our understanding of berry ripening under high temperatures.


Asunto(s)
Adaptación Fisiológica/genética , Frutas/genética , Temperatura , Vitis/genética , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Antocianinas/metabolismo , Proteínas de Unión al ADN/genética , Frutas/metabolismo , Frutas/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Luz , Malatos/metabolismo , Redes y Vías Metabólicas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Transcriptoma , Vitis/metabolismo , Vitis/fisiología
16.
Nat Commun ; 14(1): 1122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854674

RESUMEN

The mechanisms triggering metastasis in pheochromocytoma/paraganglioma are unknown, hindering therapeutic options for patients with metastatic tumors (mPPGL). Herein we show by genomic profiling of a large cohort of mPPGLs that high mutational load, microsatellite instability and somatic copy-number alteration burden are associated with ATRX/TERT alterations and are suitable prognostic markers. Transcriptomic analysis defines the signaling networks involved in the acquisition of metastatic competence and establishes a gene signature related to mPPGLs, highlighting CDK1 as an additional mPPGL marker. Immunogenomics accompanied by immunohistochemistry identifies a heterogeneous ecosystem at the tumor microenvironment level, linked to the genomic subtype and tumor behavior. Specifically, we define a general immunosuppressive microenvironment in mPPGLs, the exception being PD-L1 expressing MAML3-related tumors. Our study reveals canonical markers for risk of metastasis, and suggests the usefulness of including immune parameters in clinical management for PPGL prognostication and identification of patients who might benefit from immunotherapy.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Neoplasias Primarias Secundarias , Paraganglioma , Feocromocitoma , Humanos , Neoplasias de las Glándulas Suprarrenales/genética , Genómica , Paraganglioma/genética , Paraganglioma/inmunología , Feocromocitoma/genética , Feocromocitoma/inmunología , Microambiente Tumoral/genética
17.
Nat Plants ; 8(3): 281-294, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35318445

RESUMEN

The control of carbon allocation, storage and usage is critical for plant growth and development and is exploited for both crop food production and CO2 capture. Potato tubers are natural carbon reserves in the form of starch that have evolved to allow propagation and survival over winter. They form from stolons, below ground, where they are protected from adverse environmental conditions and animal foraging. We show that BRANCHED1b (BRC1b) acts as a tuberization repressor in aerial axillary buds, which prevents buds from competing in sink strength with stolons. BRC1b loss of function leads to ectopic production of aerial tubers and reduced underground tuberization. In aerial axillary buds, BRC1b promotes dormancy, abscisic acid responses and a reduced number of plasmodesmata. This limits sucrose accumulation and access of the tuberigen protein SP6A. BRC1b also directly interacts with SP6A and blocks its tuber-inducing activity in aerial nodes. Altogether, these actions help promote tuberization underground.


Asunto(s)
Solanum tuberosum , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Clin Transl Med ; 12(8): e1001, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35979662

RESUMEN

BACKGROUND: Comprehensive molecular studies on tumours are needed to delineate immortalization process steps and identify sensitive prognostic biomarkers in thyroid cancer. METHODS AND RESULTS: In this study, we extensively characterize telomere-related alterations in a series of 106 thyroid tumours with heterogeneous clinical outcomes. Using a custom-designed RNA-seq panel, we identified five telomerase holoenzyme-complex genes upregulated in clinically aggressive tumours compared to tumours from long-term disease-free patients, being TERT and TERC denoted as independent prognostic markers by multivariate regression model analysis. Characterization of alterations related to TERT re-expression revealed that promoter mutations, methylation and/or copy gains exclusively co-occurred in clinically aggressive tumours. Quantitative-FISH (fluorescence in situ hybridization) analysis of telomere lengths showed a significant shortening in these carcinomas, which matched with a high proliferative rate measured by Ki-67 immunohistochemistry. RNA-seq data analysis indicated that short-telomere tumours exhibit an increased transcriptional activity in the 5-Mb-subtelomeric regions, site of several telomerase-complex genes. Gene upregulation enrichment was significant for specific chromosome-ends such as the 5p, where TERT is located. Co-FISH analysis of 5p-end and TERT loci showed a more relaxed chromatin configuration in short telomere-length tumours compared to normal telomere-length tumours. CONCLUSIONS: Overall, our findings support that telomere shortening leads to a 5p subtelomeric region reorganization, facilitating the transcription and accumulation of alterations at TERT-locus.


Asunto(s)
Telomerasa , Neoplasias de la Tiroides , Humanos , Hibridación Fluorescente in Situ , Pronóstico , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética
19.
Plant Sci ; 306: 110875, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33775372

RESUMEN

Grapevine is one of the most valuable fruit crops in the world. Adverse environmental conditions reduce fruit quality and crop yield, so understanding the genetic and molecular mechanisms determining crop yield components is essential to optimize grape production. The analysis of a diverse collection of grapevine cultivars allowed us to evaluate the relationship between fruit set-related components of yield, including the incidence of reproductive disorders such as coulure and millerandage. The collection displayed a great phenotypic variation that we surveyed in a genetics association study using 15,309 single nucleotide polymorphisms (SNPs) detected in the sequence of 289 candidate genes scattered across the 19 grapevine linkage groups. After correcting statistical models for population structure and linkage disequilibrium effects, 164 SNPs from 34 of these genes were found to associate with fruit set-related traits, supporting a complex polygenic determinism. Many of them were found in the sequence of different putative MADS-box transcription factors, a gene family related with plant reproductive development control. In addition, we observed an additive effect of some of the associated SNPs on the phenotype, suggesting that advantageous alleles from different loci could be pyramided to generate superior cultivars with optimized fruit production.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/genética , Variación Genética , Genotipo , Fenotipo , Vitis/crecimiento & desarrollo , Vitis/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Análisis Mutacional de ADN , Genes de Plantas , Estudios de Asociación Genética , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
20.
Aging Cell ; 20(7): e13383, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34092006

RESUMEN

Aging is the main risk factor for cardiovascular diseases. In humans, cardiac aging remains poorly characterized. Most studies are based on chronological age (CA) and disregard biological age (BA), the actual physiological age (result of the aging rate on the organ structure and function), thus yielding potentially imperfect outcomes. Deciphering the molecular basis of ventricular aging, especially by BA, could lead to major progresses in cardiac research. We aim to describe the transcriptome dynamics of the aging left ventricle (LV) in humans according to both CA and BA and characterize the contribution of microRNAs, key transcriptional regulators. BA is measured using two CA-associated transcriptional markers: CDKN2A expression, a cell senescence marker, and apparent age (AppAge), a highly complex transcriptional index. Bioinformatics analysis of 132 LV samples shows that CDKN2A expression and AppAge represent transcriptomic changes better than CA. Both BA markers are biologically validated in relation to an aging phenotype associated with heart dysfunction, the amount of cardiac fibrosis. BA-based analyses uncover depleted cardiac-specific processes, among other relevant functions, that are undetected by CA. Twenty BA-related microRNAs are identified, and two of them highly heart-enriched that are present in plasma. We describe a microRNA-gene regulatory network related to cardiac processes that are partially validated in vitro and in LV samples from living donors. We prove the higher sensitivity of BA over CA to explain transcriptomic changes in the aging myocardium and report novel molecular insights into human LV biological aging. Our results can find application in future therapeutic and biomarker research.


Asunto(s)
Envejecimiento/genética , Biomarcadores/metabolismo , Ventrículos Cardíacos/metabolismo , MicroARNs/genética , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA