Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 53(3): 597-613.e6, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32735846

RESUMEN

CD4+ T helper (Th) cells are fundamental players in immunity. Based on the expression of signature cytokines and transcription factors, several Th subsets have been defined. Th cells are thought to be far more heterogeneous and multifunctional than originally believed, but characterization of the full diversity has been hindered by technical limitations. Here, we employ mass cytometry to analyze the diversity of Th cell responses generated in vitro and in animal disease models, revealing a vast heterogeneity of effector states with distinct cytokine footprints. The diversities of cytokine responses established during primary antigen encounters in Th1- and Th2-cell-polarizing conditions are largely maintained after secondary challenge, regardless of the new inflammatory environment, highlighting many of the identified states as stable Th cell sublineages. We also find that Th17 cells tend to upregulate Th2-cell-associated cytokines upon challenge, indicating a closer developmental connection between Th17 and Th2 cells than previously anticipated.


Asunto(s)
Citocinas/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología , Animales , Asma/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pyroglyphidae/inmunología , Células TH1/citología , Células Th17/citología , Células Th2/citología
2.
EMBO Rep ; 24(12): e56815, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846480

RESUMEN

HACE1 is a HECT family E3 ubiquitin-protein ligase with broad but incompletely understood tumor suppressor activity. Here, we report a previously unrecognized link between HACE1 and signaling complexes containing mammalian target of rapamycin (mTOR). HACE1 blocks mTORC1 and mTORC2 activities by reducing mTOR stability in an E3 ligase-dependent manner. Mechanistically, HACE1 binds to and ubiquitylates Ras-related C3 botulinum toxin substrate 1 (RAC1) when RAC1 is associated with mTOR complexes, including at focal adhesions, leading to proteasomal degradation of RAC1. This in turn decreases the stability of mTOR to reduce mTORC1 and mTORC2 activity. HACE1 deficient cells show enhanced mTORC1/2 activity, which is reversed by chemical or genetic RAC1 inactivation but not in cells expressing the HACE1-insensitive mutant, RAC1K147R . In vivo, Rac1 deletion reverses enhanced mTOR expression in KRasG12D -driven lung tumors of Hace1-/- mice. HACE1 co-localizes with mTOR and RAC1, resulting in RAC1-dependent loss of mTOR protein stability. Together, our data demonstrate that HACE1 destabilizes mTOR by targeting RAC1 within mTOR-associated complexes, revealing a unique ubiquitin-dependent process to control the activity of mTOR signaling complexes.


Asunto(s)
Ubiquitina-Proteína Ligasas , Animales , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Genes Dev ; 31(20): 2099-2112, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118048

RESUMEN

Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Receptor Activador del Factor Nuclear kappa-B/fisiología , Células Epiteliales Alveolares/metabolismo , Animales , Respiración de la Célula , Células Cultivadas , Metabolismo Energético , Femenino , Hormonas Esteroides Gonadales/fisiología , Homeostasis , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor Activador del Factor Nuclear kappa-B/antagonistas & inhibidores , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Mucosa Respiratoria/metabolismo
5.
Nature ; 563(7732): 564-568, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405245

RESUMEN

Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Biopterinas/análogos & derivados , Neoplasias/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Administración Oral , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/patología , Biopterinas/biosíntesis , Biopterinas/metabolismo , Biopterinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Coenzimas/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Humanos , Hipersensibilidad/inmunología , Hierro/metabolismo , Quinurenina/metabolismo , Quinurenina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
6.
EMBO J ; 38(19): e101233, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31414712

RESUMEN

Tissues in multicellular organisms are populated by resident macrophages, which perform both generic and tissue-specific functions. The latter are induced by signals from the microenvironment and rely on unique tissue-specific molecular programs requiring the combinatorial action of tissue-specific and broadly expressed transcriptional regulators. Here, we identify the transcription factors Bhlhe40 and Bhlhe41 as novel regulators of alveolar macrophages (AMs)-a population that provides the first line of immune defense and executes homeostatic functions in lung alveoli. In the absence of these factors, AMs exhibited decreased proliferation that resulted in a severe disadvantage of knockout AMs in a competitive setting. Gene expression analyses revealed a broad cell-intrinsic footprint of Bhlhe40/Bhlhe41 deficiency manifested by a downregulation of AM signature genes and induction of signature genes of other macrophage lineages. Genome-wide characterization of Bhlhe40 DNA binding suggested that these transcription factors directly repress the expression of lineage-inappropriate genes in AMs. Taken together, these results identify Bhlhe40 and Bhlhe41 as key regulators of AM self-renewal and guardians of their identity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Homeodominio/genética , Macrófagos Alveolares/citología , Acetilación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Proliferación Celular , Autorrenovación de las Células , Supervivencia Celular , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Macrófagos Alveolares/metabolismo , Ratones , Especificidad de Órganos , Fenotipo , Análisis de Secuencia de ARN
7.
Eur Heart J ; 43(28): 2698-2709, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35417553

RESUMEN

AIMS: Newborn mice and humans display transient cardiac regenerative potential that rapidly declines postnatally. Patients who survive a myocardial infarction (MI) often develop chronic heart failure due to the heart's poor regeneration capacity. We hypothesized that the cardiac 'regenerative-to-scarring' transition might be driven by the perinatal shifts observed in the circulating T-cell compartment. METHODS AND RESULTS: Post-MI immune responses were characterized in 1- (P1) vs. 7-day-old (P7) mice subjected to left anterior descending artery ligation. Myocardial infarction induced robust early inflammatory responses (36 h post-MI) in both age groups, but neonatal hearts exhibited rapid resolution of inflammation and full functional recovery. The perinatal loss of myocardial regenerative capacity was paralleled by a baseline increase in αß-T cell (CD4+ and CD8+) numbers. Strikingly, P1-infarcted mice reconstituted with adult T-cells shifted to an adult-like healing phenotype, marked by irreversible cardiac functional impairment and increased fibrosis. Infarcted neonatal mice harbouring adult T-cells also had more monocyte-derived macrophage recruitment, as typically seen in adults. At the transcriptome level, infarcted P1 hearts that received isolated adult T-cells showed enriched gene sets linked to fibrosis, inflammation, and interferon-gamma (IFN-γ) signalling. In contrast, newborn mice that received isolated Ifng-/- adult T-cells prior to MI displayed a regenerative phenotype that resembled that of its age-matched untreated controls. CONCLUSION: Physiological T-cell development or adoptive transfer of adult IFN-γ-producing T-cells into neonates contributed to impaired cardiac regeneration and promoted irreversible structural and functional cardiac damage. These findings reveal a trade-off between myocardial regenerative potential and the development of T-cell competence.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Adulto , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Inflamación/patología , Interferón gamma , Ratones , Miocardio/patología , Miocitos Cardíacos/fisiología , Embarazo , Regeneración/fisiología
8.
Hum Mol Genet ; 29(8): 1253-1273, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32129442

RESUMEN

Some mutations affecting dynamin 2 (DNM2) can cause dominantly inherited Charcot-Marie-Tooth (CMT) neuropathy. Here, we describe the analysis of mice carrying the DNM2 K562E mutation which has been associated with dominant-intermediate CMT type B (CMTDIB). Contrary to our expectations, heterozygous DNM2 K562E mutant mice did not develop definitive signs of an axonal or demyelinating neuropathy. Rather, we found a primary myopathy-like phenotype in these mice. A likely interpretation of these results is that the lack of a neuropathy in this mouse model has allowed the unmasking of a primary myopathy due to the DNM2 K562E mutation which might be overshadowed by the neuropathy in humans. Consequently, we hypothesize that a primary myopathy may also contribute to the disease mechanism in some CMTDIB patients. We propose that these findings should be considered in the evaluation of patients, the determination of the underlying disease processes and the development of tailored potential treatment strategies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Dinamina II/deficiencia , Enfermedades Musculares/genética , Miopatías Estructurales Congénitas/genética , Animales , Axones/metabolismo , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Dinamina II/genética , Heterocigoto , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/patología , Mutación/genética , Miopatías Estructurales Congénitas/patología , Fenotipo
9.
Allergy ; 76(7): 2030-2043, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33559884

RESUMEN

BACKGROUND: Asthma is a frequent chronic disease that can potentially severely affect the respiratory capacity and well-being of patients. Mast cells (MCs) are regarded as major players in human asthma due to their capacity to release crucial inflammatory mediators following allergen exposure. However, unambiguous characterization of their role in animal models has long been hindered by the unavailability of specific MC-deficient models lacking confounding MC-unrelated effects. This study aims to examine the role of MCs in Kit-sufficient MC-deficient Cpa3Cre/+ mice. METHODS: We used a variety of models of acute and chronic asthma employing distinct routes and regimes of sensitization. These sensitizations were done via the peritoneal cavity, the skin, or the lung. Additionally, different allergens, i.e. ovalbumin and house dust mite extract, were used. RESULTS: Our results show that the absence of MCs had no impact on the severity of allergic airway inflammation in any of the tested mouse models, as measured by leukocyte infiltration in the airways, cytokine expression, antibody production, airway hyper-responsiveness and mucus production. CONCLUSION: This indicates that MCs do not play a major role in murine allergic airway inflammation.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Alérgenos , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón , Mastocitos , Ratones , Pyroglyphidae
10.
J Allergy Clin Immunol ; 143(6): 2178-2189.e5, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30654048

RESUMEN

BACKGROUND: IL-21 is a key player of adaptive immunity, with well-established roles in B-cell and cytotoxic T-cell responses. IL-21 has been implicated in promotion of effector CD4+ T cells and inhibition of forkhead box P3-positive regulatory T (Treg) cells, but the mechanism and functional relevance of these findings remain controversial. OBJECTIVE: We sought to understand the mechanisms by which IL-21 controls effector CD4+ cell responses and Treg cell homeostasis. METHODS: We used IL-21 receptor-deficient mice to study the effect of IL-21 on T-cell responses in models of asthma and colitis. We used mixed bone marrow chimeras and adoptive transfer of naive CD4+ T cells and Treg cells into lymphopenic mice to assess the cell-intrinsic effects of IL-21. Using various in vitro T-cell assays, we characterized the mechanism of IL-21-mediated inhibition of Treg cells. RESULTS: We show that IL-21 production by TH2 and follicular helper T/ex-follicular helper T cells promotes asthma by inhibiting Treg cells. Il21r-/- mice displayed reduced generation of TH2 cells and increased generation of Treg cells. In mixed chimeras we demonstrate that IL-21 promotes TH2 responses indirectly through inhibition of Treg cells. Depleting Treg cells in Il21r-/- mice restored TH2 generation and eosinophilia. Furthermore, IL-21 inhibited Treg cell generation in mice with colitis. Using competitive transfer of Il21r+/+ and Il21r-/- CD4+ cells, we show that IL-21 directly inhibited expansion of differentiated Treg cells but was dispensable for TH1/TH17 effectors. We show that IL-21 sensitizes Treg cells to apoptosis by interfering with the expression of Bcl-2 family genes. CONCLUSION: IL-21 directly promotes apoptosis of Treg cells and therefore indirectly sustains generation of inflammatory TH cells and related effector responses.


Asunto(s)
Asma/inmunología , Colitis/inmunología , Interleucinas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Apoptosis , Factores de Transcripción Forkhead , Subunidad alfa del Receptor de Interleucina-21/genética , Pulmón/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Eur Urol Oncol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704358

RESUMEN

CONTEXT: Mutations in the speckle-type POZ (SPOP) gene are frequently identified in prostate cancer (PC); yet, prognostic implications for affected patients remain unclear. Limited consensus exists regarding tailored treatments for SPOP-mutant (SPOPmut) PC. OBJECTIVE: To elucidate the prognostic and predictive significance of SPOP mutations across distinct PC stages and treatments. EVIDENCE ACQUISITION: A systematic literature search of PubMed, Embase, and Scopus was conducted up to January 29, 2024. The meta-analysis included studies comparing survival outcomes between SPOPmut and SPOP wild-type (SPOPwt) PC. EVIDENCE SYNTHESIS: From 669 records, 26 studies (including five abstracts) were analyzed. A meta-analysis of metastasis-free survival in localized (hazard ratio [HR]: 0.72, 95% confidence interval [CI]: 0.59-0.88; p < 0.01) and overall survival (OS) in metastatic PC (HR: 0.64, 95% CI: 0.53-0.76; p < 0.01) showed a favorable prognosis for patients with SPOPmut PC. In metastatic settings, SPOP mutations correlated with improved progression-free survival (PFS) and OS in patients undergoing androgen deprivation therapy ± androgen receptor signaling inhibitor (HR: 0.51, 95% CI: 0.35-0.76, p < 0.01, and HR: 0.60, 95% CI:0.46-0.79, p < 0.01, respectively). In metastatic castration-resistant PC, only abiraterone provided improved PFS and OS to patients with SPOP mutations compared with patients with SPOPwt, but data were limited. SPOP mutations did not correlate with improved PFS (p = 0.80) or OS (p = 0.27) for docetaxel. CONCLUSIONS: Patients with SPOPmut PC seem to exhibit superior oncological outcomes compared with patients with SPOPwt. Tailored risk stratification and treatment approaches should be explored in such patients. PATIENT SUMMARY: Speckle-type POZ (SPOP) mutations could be a favorable prognostic factor in patients with prostate cancer (PC) and may also predict better progression-free and overall survival than treatment with hormonal agents. Therefore, less intensified treatments omitting chemotherapy for patients with SPOP-mutant PC should be explored in clinical trials.

12.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38254788

RESUMEN

BACKGROUND: In 2019, the breakthrough of the coronavirus 2 disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represented one of the major issues of our recent history. Different drugs have been tested to rapidly find effective anti-viral treatments and, among these, antiandrogens have been suggested to play a role in mediating SARS-CoV-2 infection. Considering the high heterogeneity of studies on this topic, we decided to review the current literature. METHODS: We performed a systematic review according to PRISMA guidelines. A search strategy was conducted on PUBMED and Medline. Only original articles published from March 2020 to 31 August 2023 investigating the possible protective role of antiandrogens were included. In vitro or preclinical studies and reports not in the English language were excluded. The main objective was to investigate how antiandrogens may interfere with COVID-19 outcomes. RESULTS: Among 1755 records, we selected 31 studies, the majority of which consisted of retrospective clinical data collections and of randomized clinical trials during the first and second wave of the COVID-19 pandemic. CONCLUSIONS: In conclusion, we can state that antiandrogens do not seem to protect individuals from SARS-CoV-2 infection and COVID-19 severity and, thus, their use should not be encouraged in this field.

13.
Blood ; 118(25): 6591-600, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22021367

RESUMEN

In addition to adaptive T cells, the thymus supports the development of unconventional T cells such as natural killer T (NKT) and CD8αα intraepithelial lymphocytes (IELs), which have innate functional properties, particular antigenic specificities, and tissue localization. Both conventional and innate T cells are believed to develop from common precursors undergoing instructive, TCR-mediated lineage fate decisions, but innate T cells are proposed to undergo positive instead of negative selection in response to agonistic TCR signals. In the present study, we show that, in contrast to conventional αßT cells, innate αßT cells are not selected against functional TCRγ rearrangements and express TCRγ mRNA. Likewise, in contrast to the majority of γδT cells, thymic innate γδT cells are not efficiently selected against functional TCRß chains. In precursors of conventional T cells, autonomous TCR signals emanating from the pre-TCR or γδTCR in the absence of ligand mediate selection against the TCR of the opposite isotype and αß/γδ lineage commitment. Our data suggest that developing innate T cells ignore such signals and rely solely on agonistic TCR interactions. Consistently, most innate T cells reacted strongly against autologous thymocytes. These results suggest that innate and adaptive T-cell lineages do not develop from the same pool of precursors and potentially diverge before αß/γδ lineage commitment.


Asunto(s)
Linaje de la Célula/genética , Células Precursoras de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Inmunidad Adaptativa , Animales , Diversidad de Anticuerpos/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Femenino , Citometría de Flujo , Expresión Génica , Reordenamiento Génico de Linfocito T/genética , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Precursoras de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Linfocitos T/metabolismo , Timocitos/inmunología , Timocitos/metabolismo
14.
Blood ; 116(24): 5200-7, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-20826721

RESUMEN

Interleukin-2 (IL-2) and IL-21 share activities in the control of T- and B-cell maturation, proliferation, function, and survival. However, opposing roles for IL-2 and IL-21 have been reported in the development of regulatory T cells. To dissect unique, redundant, and opposing activities of IL-2 and IL-21, we compared T- and B-cell development and function in mice lacking both IL-2 receptor α (IL-2Rα) and IL-21R (double knockouts [DKO]) with single knockout and wild-type (WT) mice. Similarly to il2ra(-/-) mice, DKO showed reduced numbers of regulatory T cells and, consequently, hyper-activation and proliferation of T cells associated with inflammatory disease (ie, colitis), weight loss, and reduced survival. The absence of IL-2Rα resulted in overproduction of IL-21 by IFN-γ-producing CD4(+) T cells, which induced apoptosis of marginal zone (MZ) B cells. Hence, MZ B cells and MZ B-cell immunoglobulin M antibody responses to Streptococcus pneumoniae phosophorylcholine were absent in il2ra(-/-) mice but were completely restored in DKO mice. Our results highlight key roles of IL-2 in inhibiting IL-21 production by CD4(+) T cells and of IL-21 in negatively regulating MZ B-cell survival and antibody production.


Asunto(s)
Linfocitos B/citología , Inflamación/inmunología , Interleucinas/fisiología , Animales , Formación de Anticuerpos , Linfocitos T CD4-Positivos/metabolismo , Muerte Celular , Enfermedad Crónica , Interleucina-2/fisiología , Interleucinas/antagonistas & inhibidores , Interleucinas/biosíntesis , Ratones , Ratones Noqueados
15.
Mucosal Immunol ; 15(4): 656-667, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35589985

RESUMEN

Nuclear factor-κB (NF-κB) is a transcription factor with a key role in a great variety of cellular processes from embryonic development to immunity, the outcome of which depends on the fine-tuning of NF-κB activity. The development of sensitive and faithful reporter systems to accurately monitor the activation status of this transcription factor is therefore desirable. To address this need, over the years a number of different approaches have been used to generate NF-κB reporter mice, which can be broadly subdivided into bioluminescence- and fluorescence-based systems. While the former enables whole-body visualization of the activation status of NF-κB, the latter have the potential to allow the analysis of NF-κB activity at single-cell level. However, fluorescence-based reporters frequently show poor sensitivity and excessive background or are incompatible with high-throughput flow cytometric analysis. In this work we describe the generation and analysis of ROSA26 knock-in NF-κB reporter (KappaBle) mice containing a destabilized EGFP, which showed sensitive, dynamic, and faithful monitoring of NF-κB transcriptional activity at the single-cell level of various cell types during inflammatory and infectious diseases.


Asunto(s)
FN-kappa B , Factores de Transcripción , Animales , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Ratones , FN-kappa B/metabolismo , Factores de Transcripción/metabolismo
16.
Nat Commun ; 13(1): 1804, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379808

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is an inherently immune cell deprived tumor, characterized by desmoplastic stroma and suppressive immune cells. Here we systematically dissect PDA intrinsic mechanisms of immune evasion by in vitro and in vivo CRISPR screening, and identify Vps4b and Rnf31 as essential factors required for escaping CD8+ T cell killing. For Vps4b we find that inactivation impairs autophagy, resulting in increased accumulation of CD8+ T cell-derived granzyme B and subsequent tumor cell lysis. For Rnf31 we demonstrate that it protects tumor cells from TNF-mediated caspase 8 cleavage and subsequent apoptosis induction, a mechanism that is conserved in human PDA organoids. Orthotopic transplantation of Vps4b- or Rnf31 deficient pancreatic tumors into immune competent mice, moreover, reveals increased CD8+ T cell infiltration and effector function, and markedly reduced tumor growth. Our work uncovers vulnerabilities in PDA that might be exploited to render these tumors more susceptible to the immune system.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Linfocitos T CD8-positivos , Carcinoma Ductal Pancreático/patología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Ratones , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Ubiquitina-Proteína Ligasas
17.
iScience ; 24(10): 103143, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34646985

RESUMEN

The liver's remarkable regenerative capacity is orchestrated by several growth factors and cytokines. Fibroblast growth factor receptor 3 (Fgfr3) is frequently overexpressed in hepatocellular carcinoma and promotes cancer aggressiveness, whereas its role in liver homeostasis, repair and regeneration is unknown. We show here that Fgfr3 is expressed by hepatocytes in the healthy liver. Its major ligand, Fgf9, is mainly expressed by non-parenchymal cells and upregulated upon injury. Mice lacking Fgfr3 in hepatocytes exhibit increased tissue necrosis after acute toxin treatment and more excessive fibrosis after long-term injury. This was not a consequence of immunological alterations in the non-injured liver as revealed by comprehensive flow cytometry analysis. Rather, loss of Fgfr3 altered the expression of metabolic and pro-fibrotic genes in hepatocytes. These results identify a paracrine Fgf9-Fgfr3 signaling pathway that protects from toxin-induced cell death and the resulting liver fibrosis and suggests a potential use of FGFR3 ligands for therapeutic purposes.

18.
J Exp Med ; 218(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32930709

RESUMEN

Jagunal homolog 1 (JAGN1) has been identified as a critical regulator of neutrophil biology in mutant mice and rare-disease patients carrying JAGN1 mutations. Here, we report that Jagn1 deficiency results in alterations in the endoplasmic reticulum (ER) of antibody-producing cells as well as decreased antibody production and secretion. Consequently, mice lacking Jagn1 in B cells exhibit reduced serum immunoglobulin (Ig) levels at steady state and fail to mount an efficient humoral immune response upon immunization with specific antigens or when challenged with viral infections. We also demonstrate that Jagn1 deficiency in B cells results in aberrant IgG N-glycosylation leading to enhanced Fc receptor binding. Jagn1 deficiency in particular affects fucosylation of IgG subtypes in mice as well as rare-disease patients with loss-of-function mutations in JAGN1. Moreover, we show that ER stress affects antibody glycosylation. Our data uncover a novel and key role for JAGN1 and ER stress in antibody glycosylation and humoral immunity in mice and humans.


Asunto(s)
Estrés del Retículo Endoplásmico/inmunología , Inmunidad Humoral , Inmunoglobulina G/inmunología , Proteínas de la Membrana/inmunología , Animales , Estrés del Retículo Endoplásmico/genética , Glicosilación , Humanos , Inmunoglobulina G/genética , Mutación con Pérdida de Función , Proteínas de la Membrana/genética , Ratones Noqueados , Receptores Fc/genética , Receptores Fc/inmunología
19.
Oncogene ; 40(11): 1988-2001, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33603169

RESUMEN

Uncovering the mechanisms that underpin how tumor cells adapt to microenvironmental stress is essential to better understand cancer progression. The HACE1 (HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase) gene is a tumor suppressor that inhibits the growth, invasive capacity, and metastasis of cancer cells. However, the direct regulatory pathways whereby HACE1 confers this tumor-suppressive effect remain to be fully elucidated. In this report, we establish a link between HACE1 and the major stress factor, hypoxia-inducible factor 1 alpha (HIF1α). We find that HACE1 blocks the accumulation of HIF1α during cellular hypoxia through decreased protein stability. This property is dependent on HACE1 E3 ligase activity and loss of Ras-related C3 botulinum toxin substrate 1 (RAC1), an established target of HACE1 mediated ubiquitinylation and degradation. In vivo, genetic deletion of Rac1 reversed the increased HIF1α expression observed in Hace1-/- mice in murine KRasG12D-driven lung tumors. An inverse relationship was observed between HACE1 and HIF1α levels in tumors compared to patient-matched normal kidney tissues, highlighting the potential pathophysiological significance of our findings. Together, our data uncover a previously unrecognized function for the HACE1 tumor suppressor in blocking HIF1α accumulation under hypoxia in a RAC1-dependent manner.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Pulmonares/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Proteína de Unión al GTP rac1/genética , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Estabilidad Proteica , Transducción de Señal/genética , Hipoxia Tumoral/genética , Ubiquitinación/genética
20.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34529751

RESUMEN

Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.


Asunto(s)
Antibacterianos/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , FN-kappa B/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA