Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(33): 20223-20234, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32759215

RESUMEN

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon's ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner's ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.


Asunto(s)
Halobacteriaceae/fisiología , Nanoarchaeota/fisiología , Polisacáridos/metabolismo , Simbiosis/fisiología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Técnicas de Cocultivo , Regulación de la Expresión Génica Arqueal , Genoma Arqueal , Genómica , Filogenia
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982787

RESUMEN

Solanum tuberosum L. (common potato) is one of the most important crops produced almost all over the world. Genomic sequences of potato opens the way for studying the molecular variations related to diversification. We performed a reconstruction of genomic sequences for 15 tetraploid potato cultivars grown in Russia using short reads. Protein-coding genes were identified; conserved and variable parts of pan-genome and the repertoire of the NBS-LRR genes were characterized. For comparison, we used additional genomic sequences for twelve South American potato accessions, performed analysis of genetic diversity, and identified the copy number variations (CNVs) in two these groups of potato. Genomes of Russian potato cultivars were more homogeneous by CNV characteristics and have smaller maximum deletion size in comparison with South American ones. Genes with different CNV occurrences in two these groups of potato accessions were identified. We revealed genes of immune/abiotic stress response, transport and five genes related to tuberization and photoperiod control among them. Four genes related to tuberization and photoperiod were investigated in potatoes previously (phytochrome A among them). A novel gene, homologous to the poly(ADP-ribose) glycohydrolase (PARG) of Arabidopsis, was identified that may be involved in circadian rhythm control and contribute to the acclimatization processes of Russian potato cultivars.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Variaciones en el Número de Copia de ADN , Genoma de Planta , Genómica , Tetraploidía
3.
Proc Natl Acad Sci U S A ; 116(37): 18638-18646, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451656

RESUMEN

The Calvin-Benson-Bassham (CBB) cycle assimilates CO2 for the primary production of organic matter in all plants and algae, as well as in some autotrophic bacteria. The key enzyme of the CBB cycle, ribulose-bisphosphate carboxylase/oxygenase (RubisCO), is a main determinant of de novo organic matter production on Earth. Of the three carboxylating forms of RubisCO, forms I and II participate in autotrophy, and form III so far has been associated only with nucleotide and nucleoside metabolism. Here, we report that form III RubisCO functions in the CBB cycle in the thermophilic chemolithoautotrophic bacterium Thermodesulfobium acidiphilum, a phylum-level lineage representative. We further show that autotrophic CO2 fixation in T. acidiphilum is accomplished via the transaldolase variant of the CBB cycle, which has not been previously demonstrated experimentally and has been considered unlikely to occur. Thus, this work reveals a distinct form of the key pathway of CO2 fixation.


Asunto(s)
Procesos Autotróficos , Proteínas Bacterianas/metabolismo , Firmicutes/enzimología , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Redes y Vías Metabólicas
4.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142829

RESUMEN

Diseases caused by the Gram-positive bacterium Curtobacteriumflaccumfaciens pv. flaccumfaciens (Cff) inflict substantial economic losses in soybean cultivation. Use of specific bacterial viruses (bacteriophages) for treatment of seeds and plants to prevent the development of bacterial infections is a promising approach for bioprotection in agriculture. Phage control has been successfully tested for a number of staple crops. However, this approach has never been applied to treat bacterial diseases of legumes caused by Cff, and no specific bacteriophages have been known to date. This paper presents detailed characteristics of the first lytic bacteriophage infecting this pathogen. Phage Ayka, related to φ29-like (Salasmaviridae) viruses, but representing a new subfamily, was shown to control the development of bacterial wilt and tan spot in vitro and in greenhouse plants.


Asunto(s)
Actinomycetales , Infecciones Bacterianas , Bacteriófagos , Fabaceae , Actinobacteria , Bacterias , Fabaceae/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Glycine max
5.
Int J Syst Evol Microbiol ; 70(8): 4730-4738, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32697189

RESUMEN

An obligately alkaliphilic, anaerobic, proteolytic bacterium was isolated from a sample of Tanatar III soda lake sediment (Altai region, Russia) and designated as strain Z-1701T. Cells of strain Z-1701T were short, straight, motile Gram-stain-positive rods. Growth of Z-1701T obligately depended on the presence of sodium carbonate. Strain Z-1701T could utilize various peptides mixtures, such as beef and yeast extracts, peptone, soytone, trypticase and tryptone, as well as such proteins as albumin, gelatin and sodium caseinate. It was able to grow oligotrophically with 0.02 g l-1 yeast extract as the sole energy and carbon source. Carbohydrates did not support the growth of strain Z-1701T. The main products released during the growth of strain Z-1701T on tryptone were formate, acetate and ammonium. Strain Z-1701T was able to reduce ferrihydrite, Fe(III)-EDTA, anthraquinone-2,6-disulfonate and elemental sulfur, using proteinaceous substrates as electron donors. In all cases the presence of the electron acceptor in the medium stimulated growth. The main cellular fatty acids were iso-C15 : 0, iso-C15 : 0 aldehyde, iso-C15 : 1 ω6, C16 : 0, iso-C17 : 0 aldehyde, C16 : 0 aldehyde and C14 : 0. The DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on the concatenated alignment of 120 protein-marker sequences revealed that strain Z-1701T falls into a cluster with the genus Tindallia, family Clostridiaceae. 16S rRNA gene sequence identity between strain Z-1701T and Tindallia species were 88.3-89.75 %. On the basis of its phenotypic characteristics and phylogenetic position, the novel isolate is considered to be a representative of a novel genus and species for which the name Isachenkonia alkalipeptolytica gen. nov., sp. nov. is proposed, with Z-1701T (=JCM 32929Т=DSM 109060Т=VKM B-3261Т) as its type strain.


Asunto(s)
Bacterias Anaerobias/clasificación , Compuestos Férricos/metabolismo , Lagos/microbiología , Filogenia , Bacterias Reductoras del Azufre/clasificación , Álcalis , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Bacilos Grampositivos/clasificación , Bacilos Grampositivos/aislamiento & purificación , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Azufre/metabolismo , Bacterias Reductoras del Azufre/aislamiento & purificación
6.
Int J Syst Evol Microbiol ; 70(2): 1192-1202, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31769750

RESUMEN

A novel aerobic moderately thermophilic bacterium, strain 3753OT, was isolated from a Chukotka hot spring (Arctic, Russia) using the newly developed technology of laser engineering of microbial systems. Сells were regular short rods, 0.4×0.8-2.0 µm in size, with a monoderm-type envelope and a single flagellum. The temperature and pH ranges for growth were 42-60 °C and pH 6.5-8.5, the optima being 50-54 °C and pH 7.3. Strain 3753OT grew chemoorganoheterotrophically on a number of carbohydrates or peptidic substrates and volatile fatty acids, and chemolithoautotrophically with siderite (FeCO3) as the electron donor. The major cellular fatty acid was branched C19 : 0. Phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as well as two yellow carotenoid-type pigments were detected in the polar lipid extract. Strain 3753OT was inhibited by chloramphenicol, polymyxin B, vancomycin, streptomycin, neomycin and kanamycin, but resistant to the action of novobiocin and ampicillin. The DNA G+C content was 69.9 mol%. The 16S rRNA gene as well as 51 conservative protein sequence-based phylogenetic analyses placed strain 3753OT within the previously uncultivated lineage OLB14 in the phylum Chloroflexi. Taking into account the phylogenetic position as well as phenotypic properties of the novel isolate, the novel genus and species Tepidiforma bonchosmolovskayae gen. nov., sp. nov., within the Tepidiformaceae fam. nov., the Tepidiformales ord. nov. and the Tepidiformia classis nov. are proposed. The type strain of Tepidiforma bonchosmolovskayae is 3753OT (=VKM B-3389T=KTCT 72284T).


Asunto(s)
Chloroflexi/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Regiones Árticas , Técnicas de Tipificación Bacteriana , Composición de Base , Carotenoides/química , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
7.
Int J Syst Evol Microbiol ; 69(8): 2299-2304, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31125304

RESUMEN

A novel aerobic bacterium, designated as strain GM2012T, was isolated from a microbial mat proliferating under the flow of thermal water dissipating from the wall of a 4000 m deep mine in South Africa. The cells were non-motile cocci, capable of budding, occurred in single or gathered in aggregates. The organism is a strictly aerobic chemoorganoheterotroph, preferring simple sugars and polysaccharides as growth substrates. The optimal growth occurred at 42 °C and pH 7.5-7.7. The predominant fatty acids were palmitate, stearate and oleate. The G+C content of the DNA was 70.1 mol%. The 16S rRNA gene sequence analysis placed strain GM2012T within the family Isosphaeraceae of the order Planctomycetales with 88-89 % sequence identity to Isosphaera pallida, Aquisphaeragiovannonii, Singulisphaera acidiphila, Paludisphaera borealis and Tundrisphaera lichenicola type strains. Based on the genotypic and phenotypic distinctive features of the new strain, we propose a novel genus and species Tautonia sociabilis gen. nov., sp. nov. with the type strain GM2012T (=VKM B-2860,=KCTC 72013).


Asunto(s)
Agua Subterránea/microbiología , Filogenia , Planctomycetales/clasificación , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Minería , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sudáfrica
8.
Int J Syst Evol Microbiol ; 69(5): 1327-1335, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30801242

RESUMEN

An extremely halophilic euryarchaeon, strain HArcel1T, was enriched and isolated in pure culture from the surface brines and sediments of hypersaline athalassic lakes in the Kulunda Steppe (Altai region, Russia) using amorphous cellulose as the growth substrate. The colonies of HArcel1T are pale-orange, and form large zones of cellulose hydrolysis around them. The cells are non-motile cocci of variable size with a thin monolayer cell wall. The isolate is an obligate aerobic heterotroph capable of growth with only three substrates: various forms of insoluble cellulose, xylan and cellobiose. Strain HArcel1T is an extremely halophilic neutrophile, growing within the salinity range from 2.5 to 5 M NaCl (optimum at 3.5-4 M). The core archaeal lipids are dominated by C20-C20 and C25-C20 dialkyl glycerol ethers, in approximately 6:1 proportion. The 16S rRNA and rpoB' gene analysis indicated that HArcel1T forms a separate lineage within the family Haloarculaceae, order Halobacteriales, with the genera Halorhabdus and Halopricus as closest relatives. On the basis of the unique phenotypic properties and distinct phylogeny of the 16S rRNA and rpoB' genes, it is suggested that strain HArcel1T is classified into a new genus and species Halococcoides cellulosivorans gen. nov., sp. nov. (JCM 31941T=UNIQEM U975T).


Asunto(s)
Sedimentos Geológicos/microbiología , Halobacteriales/clasificación , Lagos/microbiología , Filogenia , Sales (Química) , Celulosa , ADN de Archaea/genética , Ácidos Grasos/química , Genes Arqueales , Halobacteriales/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
9.
Int J Syst Evol Microbiol ; 67(5): 1486-1490, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27983475

RESUMEN

A moderately thermophilic, anaerobic bacterium designated as strain KRT was isolated from a shallow-water submarine hydrothermal vent (Kunashir Island, Southern Kurils, Russia). Cells of strain KRT were thin (0.2-0.3 µm), flexible, motile, Gram-stain-negative rods of variable length. Optimal growth conditions were pH 6.6, 55 °C and 1-3 % (w/v) NaCl. Strain KRT was able to ferment a wide range of proteinaceous substrates, pyruvate, and mono-, di- and polysaccharides. The best growth occurred with proteinaceous compounds. Nitrate significantly stimulated the growth on proteinaceous substrates decreasing H2 formation, ammonium being the main product of nitrate reduction. Strain KRT did not need the presence of a reducing agent in the medium and tolerated the presence of oxygen in the gas phase up to 3 % (v/v). In the presence of nitrate, aerotolerance of isolate KRT was enhanced up to 6-8 % O2 (v/v). Strain KRT was able to grow chemolithoheterotrophically, oxidizing H2 and reducing nitrate to ammonium. Yeast extract (0.05 g l-1) was required for growth. The G+C content of the genomic DNA of strain KRT was 47.3 mol%. 16S rRNA gene sequence analysis placed isolate KRT in the phylum Calditrichaeota where it represented a novel species of a new genus, for which the name Calorithrix insularis gen. nov., sp. nov. is proposed. The type strain of Calorithrix insularis is KRT (=DSM 101605T=VKM B-3022T).


Asunto(s)
Bacterias Anaerobias/clasificación , Respiraderos Hidrotermales/microbiología , Filogenia , Bacterias Anaerobias/genética , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Bacterias Gramnegativas/genética , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
10.
Int J Syst Evol Microbiol ; 67(5): 1482-1485, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27995866

RESUMEN

An obligately anaerobic, sulfate-reducing micro-organism, strain 3127-1T, was isolated from geothermally heated soil (Oil Site, Uzon Caldera, Kamchatka, Russia). The new isolate was a moderately thermoacidophilic anaerobe able to grow with H2 or formate by respiration of sulfate or thiosulfate. The pH range for growth was 3.7-6.5, with an optimum at 4.8-5.0. The temperature range for growth was 37-65 °C, with an optimum at 55 °C. The G+C content of the genomic DNA was 33.7 mol%. The genome of strain 3127-1T contained two almost identical 16S rRNA genes, differing by a single nucleotide substitution. The closest 16S rRNA gene sequence of a validly published species belonged to Thermodesulfobium narugense Na82T (99.5 % similarity). However, the average nucleotide identity of the genomes of strain 3127-1T and T. narugense Na82T and the predicted DNA-DNA hybridization value (GGDC 2.1 blast+, formula 2) were as low as 86 and 32.5±2.5 %, respectively. This, together with phenotypic data, showed the new isolate to belong to a novel species, for which the name Thermodesulfobium acidiphilum sp. nov. is proposed. The type strain is 3127-1T (=DSM 102892T=VKM B-3043T).


Asunto(s)
Firmicutes/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Firmicutes/genética , Firmicutes/aislamiento & purificación , Hibridación de Ácido Nucleico , Oxidación-Reducción , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
11.
Int J Syst Evol Microbiol ; 66(3): 1407-1412, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26801582

RESUMEN

An obligately anaerobic, hyperthermophilic, organoheterotrophic archaeon, strain 1633T, was isolated from a terrestrial hot spring of the Uzon Caldera (Kamchatka Peninsula, Russia). Cells were regular cocci, 0.5-0.9 µm in diameter, with one flagellum. The temperature range for growth was 80-95 °C, with an optimum at 84 °C. Strain 1633T grew on yeast extract, beef extract, peptone, cellulose and cellobiose. No growth was detected on other sugars or carbohydrates, organic acids, or under autotrophic conditions. The only detected growth products were CO2, acetate, and H2. The growth rate was stimulated by elemental sulfur, which was reduced to hydrogen sulfide. The in silico-calculated G+C content of the genomic DNA of strain 1633T was 55.64 mol%. 16S rRNA gene sequence analysis placed strain 1633T together with the non-validly published 'Thermogladius shockii' strain WB1 in a separate genus-level cluster within the family Desulfurococcaceae. Average nucleotide identity (ANI) results revealed 75.72 % identity between strain 1633T and 'Thermogladius shockii' WB1. Based on these results we propose a novel genus and species with the name Thermogladius calderae gen. nov., sp. nov. The type strain of the type species is 1633T ( = DSM 22663T = VKM B-2946T).

12.
Appl Microbiol Biotechnol ; 99(23): 10031-46, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26266751

RESUMEN

A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct α/ß-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new α-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-α-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the α/ß-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30% methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1.


Asunto(s)
Variación Genética , Sedimentos Geológicos/microbiología , Hidrolasas/clasificación , Hidrolasas/metabolismo , Respiraderos Hidrotermales , Metagenoma , Escherichia coli/genética , Biblioteca de Genes , Pruebas Genéticas , Hidrolasas/genética , Islas , Italia , Especificidad por Sustrato
13.
Int J Syst Evol Microbiol ; 64(Pt 9): 3307-3313, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24994778

RESUMEN

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3(T), was isolated from a deep-sea sample containing Riftia pachyptila sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3-0.8 µm in width and 1.5-10 µm in length, surrounded by a sheath-like structure (toga). Strain Rift-s3(T) grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l(-1). Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l(-1)), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including ß-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3(T) with the genus Thermosipho, with Thermosipho atlanticus Ob7(T) as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus Thermosipho, Thermosipho activus sp. nov., with Rift-s3(T) ( = DSM 26467(T) = VKM B-2803(T)) as the type strain.


Asunto(s)
Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , California , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/genética , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/aislamiento & purificación , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Viruses ; 16(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38543771

RESUMEN

The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis and, especially, the taxonomic description of bacteriophages are often difficult due to the peculiarities of the evolution of bacteriophages, which often includes the horizontal transfer of genes and genomic modules. The latter is particularly pronounced for temperate bacteriophages, which are capable of integration into the bacterial chromosome. Xanthomonas phage PBR31 is a temperate bacteriophage, which has been neither described nor classified previously, that infects the plant pathogen Xanthomonas campestris pv. campestris. Genomic analysis, including phylogenetic studies, indicated the separation of phage PBR31 from known classified bacteriophages, as well as its distant relationship with other temperate bacteriophages, including the Lederbervirus group. Bioinformatic analysis of proteins revealed distinctive features of PBR31, including the presence of a protein similar to the small subunit of D-family DNA polymerase and advanced lysis machinery. Taxonomic analysis showed the possibility of assigning phage PBR31 to a new taxon, although the complete taxonomic description of Xanthomonas phage PBR31 and other related bacteriophages is complicated by the complex evolutionary history of the formation of its genome. The general biological features of the PBR31 phage were analysed for the first time. Due to its presumably temperate lifestyle, there is doubt as to whether the PBR31 phage is appropriate for phage control purposes. Bioinformatics analysis, however, revealed the presence of cell wall-degrading enzymes that can be utilised for the treatment of bacterial infections.


Asunto(s)
Bacteriófagos , Xanthomonas , Bacteriófagos/genética , Xanthomonas/genética , Filogenia , ADN Polimerasa Dirigida por ADN/genética
15.
Front Vet Sci ; 11: 1321202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420205

RESUMEN

Introduction: It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis. Methods: In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus. Results: The analysis revealed a high degree of variability in bacterial community structures across affected skin samples, indicating the importance of specific commensal microorganisms colonizing individual hosts. The most common and abundant bacteria found in scab samples were Fusobacterium necrophorum, Streptococcus dysgalactiae, Helcococcus ovis and Trueperella pyogenes, irrespective of host. Bacterial reads belonging to the genera Moraxella, Mannheimia, Corynebacterium, Staphylococcus and Micrococcus were identified. Discussion: This study is the first to investigate capripox virus-associated changes in the skin microbiome using whole-genome metagenomic profiling. The findings will provide a basis for further investigation into capripoxvirus pathogenesis. In addition, this study highlights the challenge of selecting an optimal bioinformatics approach for the analysis of metagenomic data in clinical and veterinary practice. For example, direct classification of reads using a kmer-based algorithm resulted in a significant number of systematic false positives, which may be attributed to the peculiarities of the algorithm and database selection. On the contrary, the process of de novo assembly requires a large number of target reads from the symbiotic microbial community. In this work, the obtained sequencing data were processed by three different approaches, including direct classification of reads based on k-mers, mapping of reads to a marker gene database, and de novo assembly and binning of metagenomic contigs. The advantages and disadvantages of these techniques and their practicality in veterinary settings are discussed in relation to the results obtained.

16.
Life (Basel) ; 13(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895465

RESUMEN

The anaerobic oxidation of fatty acids and alcohols occurs near the thermodynamic limit of life. This process is driven by syntrophic bacteria that oxidize fatty acids and/or alcohols, their syntrophic partners that consume the products of this oxidation, and the pathways for interspecies electron exchange via these products or direct interspecies electron transfer (DIET). Due to the interdependence of syntrophic microorganisms on each other's metabolic activity, their isolation in pure cultures is almost impossible. Thus, little is known about their physiology, and the only available way to fill in the knowledge gap on these organisms is genomic and metabolic analysis of syntrophic cultures. Here we report the results of genome sequencing and analysis of an obligately syntrophic alkaliphilic bacterium 'Candidatus Contubernalis alkaliaceticus'. The genomic data suggest that acetate oxidation is carried out by the Wood-Ljungdahl pathway, while a bimodular respiratory system involving an Rnf complex and a Na+-dependent ATP synthase is used for energy conservation. The predicted genomic ability of 'Ca. C. alkaliaceticus' to outperform interspecies electron transfer both indirectly, via H2 or formate, and directly, via pili-like appendages of its syntrophic partner or conductive mineral particles, was experimentally demonstrated. This is the first indication of DIET in the class Dethiobacteria.

17.
Syst Appl Microbiol ; 46(2): 126403, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736145

RESUMEN

Two heterotrophic bacteroidetes strains were isolated as satellites from autotrophic enrichments inoculated with samples from hypersaline soda lakes in southwestern Siberia. Strain Z-1702T is an obligate anaerobic fermentative saccharolytic bacterium from an iron-reducing enrichment culture, while Ca. Cyclonatronum proteinivorum OmegaT is an obligate aerobic proteolytic microorganism from a cyanobacterial enrichment. Cells of isolated bacteria are characterized by highly variable morphology. Both strains are chloride-independent moderate salt-tolerant obligate alkaliphiles and mesophiles. Strain Z-1702T ferments glucose, maltose, fructose, mannose, sorbose, galactose, cellobiose, N-acetyl-glucosamine and alpha-glucans, including starch, glycogen, dextrin, and pullulan. Strain OmegaT is strictly proteolytic utilizing a range of proteins and peptones. The main polar lipid fatty acid in both strains is iso-C15:0, while other major components are various C16 and C17 isomers. According to pairwise sequence alignments using BLAST Gracilimonas was the nearest cultured relative to both strains (<90% of 16S rRNA gene sequence identity). Phylogenetic analysis placed strain Z-1702T and strain OmegaT as two different genera in a deep-branching clade of the new family level within the order Balneolales with genus. Based on physiological characteristics and phylogenetic position of strain Z-1702T it was proposed to represent a novel genus and species Natronogracilivirga saccharolityca gen. nov., sp. nov. (= DSMZ 109061T =JCM 32930T =VKM B 3262T). Furthermore, phylogenetic and phenotypic parameters of N. saccharolityca and C. proteinivorum gen. nov., sp. nov., strain OmegaT (=JCM 31662T, =UNIQEM U979T), make it possible to include them into a new family with a proposed designation Cyclonatronaceae fam. nov..


Asunto(s)
Bacteroidetes , Lagos , Bacteroidetes/genética , Lagos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Bacterias Anaerobias , Ácidos Grasos/análisis , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
18.
Environ Microbiome ; 18(1): 61, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464403

RESUMEN

BACKGROUND: Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS: Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS: This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.

19.
Front Microbiol ; 14: 1185739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250036

RESUMEN

One of the important current issues of bioenergetics is the establishment of the thermodynamic limits of life. There is still no final understanding of what is the minimum value of the energy yield of a reaction that is sufficient to be used by an organism (the so-called "biological quantum of energy"). A reasonable model for determination of the minimal energy yield would be microorganisms capable of living on low-energy substrates, such as acetogenic prokaryotes. The most prominent metabolic feature of acetogens is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates, which is hardly competitive in environments. Most probably, that is why only facultative autotrophic acetogens have been known so far. Here, we describe the first obligately autotrophic acetogenic bacterium Aceticella autotrophica gen. nov., sp. nov., strain 3443-3AcT. Phylogenetically, the new genus falls into a monophyletic group of heterotrophic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, and Caldanaerobacter (hereinafter referred to as TTC group), where the sole acetogenic representative has so far been the facultatively autotrophic Thermoanaerobacter kivui. A. autotrophica and T. kivui both are acetogens employing energy-converting hydrogenase (Ech-acetogens) that are likely to have inherited the acetogenesis capacity vertically from common ancestor. However, their acetogenic machineries have undergone different adjustments by gene replacements due to horizontal gene transfers from different donors. Obligate autotrophy of A. autotrophica is associated with the lack of many sugar transport systems and carbohydrate catabolism enzymes that are present in other TTC group representatives, including T. kivui.

20.
Pharmaceuticals (Basel) ; 16(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37242469

RESUMEN

The predominant route of administration of drugs with coenzyme Q10 (CoQ10) is administration per os. The bioavailability of CoQ10 is about 2-3%. Prolonged use of CoQ10 to achieve pharmacological effects contributes to the creation of elevated concentrations of CoQ10 in the intestinal lumen. CoQ10 can have an effect on the gut microbiota and the levels of biomarkers it produces. CoQ10 at a dose of 30 mg/kg/day was administered per os to Wistar rats for 21 days. The levels of gut microbiota biomarkers (hydrogen, methane, short-chain fatty acids (SCFA), and trimethylamine (TMA)) and taxonomic composition were measured twice: before the administration of CoQ10 and at the end of the experiment. Hydrogen and methane levels were measured using the fasting lactulose breath test, fecal and blood SCFA and fecal TMA concentrations were determined by NMR, and 16S sequencing was used to analyze the taxonomic composition. Administration of CoQ10 for 21 days resulted in a 1.83-fold (p = 0.02) increase in hydrogen concentration in the total air sample (exhaled air + flatus), a 63% (p = 0.02) increase in the total concentration of SCFA (acetate, propionate, butyrate) in feces, a 126% increase in butyrate (p = 0.04), a 6.56-fold (p = 0.03) decrease in TMA levels, a 2.4-fold increase in relative abundance of Ruminococcus and Lachnospiraceae AC 2044 group by 7.5 times and a 2.8-fold decrease in relative representation of Helicobacter. The mechanism of antioxidant effect of orally administered CoQ10 can include modification of the taxonomic composition of the gut microbiota and increased generation of molecular hydrogen, which is antioxidant by itself. The evoked increase in the level of butyric acid can be followed by protection of the gut barrier function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA