Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(13): 3349-3351, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34171315
2.
Br J Cancer ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902532

RESUMEN

BACKGROUND: While NTRK fusion-positive cancers can be exquisitely sensitive to first-generation TRK inhibitors, resistance inevitably occurs, mediated in many cases by acquired NTRK mutations. Next-generation inhibitors (e.g., selitrectinib, repotrectinib) maintain activity against these TRK mutant tumors; however, there are no next-generation TRK inhibitors approved by the FDA and select trials have stopped treating patients. Thus, the identification of novel, potent and specific next-generation TRK inhibitors is a high priority. METHODS: In silico modeling and in vitro kinase assays were performed on TRK wild type (WT) and TRK mutant kinases. Cell viability and clonogenic assays as well as western blots were performed on human primary and murine engineered NTRK fusion-positive TRK WT and mutant cell models. Finally, zurletrectinib was tested in vivo in human xenografts and murine orthotopic glioma models harboring TRK-resistant mutations. RESULTS: In vitro kinase and in cell-based assays showed that zurletrectinib, while displaying similar potency against TRKA, TRKB, and TRKC WT kinases, was more active than other FDA approved or clinically tested 1st- (larotrectinib) and next-generation (selitrectinib and repotrectinib) TRK inhibitors against most TRK inhibitor resistance mutations (13 out of 18). Similarly, zurletrectinib inhibited tumor growth in vivo in sub-cute xenograft models derived from NTRK fusion-positive cells at a dose 30 times lower when compared to selitrectinib. Computational modeling suggests this stronger activity to be the consequence of augmented binding affinity of zurletrectinib for TRK kinases. When compared to selitrectinib and repotrectinib, zurletrectinib showed increased brain penetration in rats 0.5 and 2 h following a single oral administration. Consistently, zurletrectinib significantly improved the survival of mice harboring orthotopic NTRK fusion-positive, TRK-mutant gliomas (median survival = 41.5, 66.5, and 104 days for selitrectinib, repotrectinib, and zurletrectinib respectively; P < 0.05). CONCLUSION: Our data identifies zurletrectinib as a novel, highly potent next-generation TRK inhibitor with stronger in vivo brain penetration and intracranial activity than other next-generation agents.

3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266955

RESUMEN

Lipids are present within the cell nucleus, where they engage with factors involved in gene regulation. Cholesterol associates with chromatin in vivo and stimulates nucleosome packing in vitro, but its effects on specific transcriptional responses are not clear. Here, we show that the lipidated Wilms tumor 1 (WT1) transcriptional corepressor, brain acid soluble protein 1 (BASP1), interacts with cholesterol in the cell nucleus through a conserved cholesterol interaction motif. We demonstrate that BASP1 directly recruits cholesterol to the promoter region of WT1 target genes. Mutation of BASP1 to ablate its interaction with cholesterol or the treatment of cells with drugs that block cholesterol biosynthesis inhibits the transcriptional repressor function of BASP1. We find that the BASP1-cholesterol interaction is required for BASP1-dependent chromatin remodeling and the direction of transcription programs that control cell differentiation. Our study uncovers a mechanism for gene-specific targeting of cholesterol where it is required to mediate transcriptional repression.


Asunto(s)
Colesterol/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/genética , Transcripción Genética , Núcleo Celular/metabolismo , Regulación hacia Abajo , Humanos , Células K562 , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34330832

RESUMEN

UDP-glucose pyrophosphorylase 2 (UGP2), the enzyme that synthesizes uridine diphosphate (UDP)-glucose, rests at the convergence of multiple metabolic pathways, however, the role of UGP2 in tumor maintenance and cancer metabolism remains unclear. Here, we identify an important role for UGP2 in the maintenance of pancreatic ductal adenocarcinoma (PDAC) growth in both in vitro and in vivo tumor models. We found that transcription of UGP2 is directly regulated by the Yes-associated protein 1 (YAP)-TEA domain transcription factor (TEAD) complex, identifying UGP2 as a bona fide YAP target gene. Loss of UGP2 leads to decreased intracellular glycogen levels and defects in N-glycosylation targets that are important for the survival of PDACs, including the epidermal growth factor receptor (EGFR). These critical roles of UGP2 in cancer maintenance, metabolism, and protein glycosylation may offer insights into therapeutic options for otherwise intractable PDACs.


Asunto(s)
Carcinoma Ductal Pancreático/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Glucógeno/biosíntesis , Neoplasias Pancreáticas/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Glicosilación , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales , Neoplasias Pancreáticas/patología , Factores de Transcripción de Dominio TEA/genética , Factores de Transcripción de Dominio TEA/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
5.
Mol Cancer ; 22(1): 138, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596643

RESUMEN

The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Neoplasias/tratamiento farmacológico , Neoplasias/genética
6.
Bioinformatics ; 33(2): 289-291, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27605104

RESUMEN

The TRI_tool, a sequence-based web tool for prediction of protein interactions in the human transcriptional regulation, is intended for biomedical investigators who work on understanding the regulation of gene expression. It has an improved predictive performance due to the training on updated, human specific, experimentally validated datasets. The TRI_tool is designed to test up to 100 potential interactions with no time delay and to report both probabilities and binarized predictions. AVAILABILITY AND IMPLEMENTATION: http://www.vin.bg.ac.rs/180/tools/tfpred.php CONTACT: vladaper@vinca.rs; nevenav@vinca.rsSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Regulación de la Expresión Génica , Unión Proteica , Programas Informáticos , Transcripción Genética , Humanos , Internet
7.
Development ; 141(11): 2271-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24803588

RESUMEN

Despite the importance of taste in determining nutrient intake, our understanding of the processes that control the development of the peripheral taste system is lacking. Several early regulators of taste development have been identified, including sonic hedgehog, bone morphogenetic protein 4 and multiple members of the Wnt/ß-catenin signaling pathway. However, the regulation of these factors, including their induction, remains poorly understood. Here, we identify a crucial role for the Wilms' tumor 1 protein (WT1) in circumvallate (CV) papillae development. WT1 is a transcription factor that is important in the normal development of multiple tissues, including both the olfactory and visual systems. In mice, WT1 expression is detectable by E12.5, when the CV taste placode begins to form. In mice lacking WT1, the CV fails to develop normally and markers of early taste development are dysregulated compared with wild type. We demonstrate that expression of the WT1 target genes Lef1, Ptch1 and Bmp4 is significantly reduced in developing tongue tissue derived from Wt1 knockout mice and that, in normal tongue, WT1 is bound to the promoter regions of these genes. Moreover, siRNA knockdown of WT1 in cultured taste cells leads to a reduction in the expression of Lef1 and Ptch1. Our data identify WT1 as a crucial transcription factor in the development of the CV through the regulation of multiple signaling pathways that have established roles in the formation and patterning of taste placodes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Papilas Gustativas/embriología , Gusto/fisiología , Lengua/embriología , Proteínas WT1/metabolismo , Animales , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Patched , Receptor Patched-1 , Fenotipo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Factores de Tiempo
8.
Hum Mol Genet ; 23(5): 1121-33, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24105467

RESUMEN

Within axons, molecular motors transport essential components required for neuronal growth and viability. Although many levels of control and regulation must exist for proper anterograde and retrograde transport of vital proteins, little is known about these mechanisms. We previously showed that presenilin (PS), a gene involved in Alzheimer's disease (AD), influences kinesin-1 and dynein function in vivo. Here, we show that these PS-mediated effects on motor protein function are via a pathway that involves glycogen synthase kinase-3ß (GSK-3ß). PS genetically interacts with GSK-3ß in an activity-dependent manner. Excess of active GSK-3ß perturbed axonal transport by causing axonal blockages, which were enhanced by reduction of kinesin-1 or dynein. These GSK-3ß-mediated axonal defects do not appear to be caused by disruptions or alterations in microtubules (MTs). Excess of non-functional GSK-3ß did not affect axonal transport. Strikingly, GSK-3ß-activity-dependent axonal transport defects were enhanced by reduction of PS. Collectively, our findings suggest that PS and GSK-3ß are required for normal motor protein function. Our observations propose a model, in which PS likely plays a role in regulating GSK-3ß activity during transport. These findings have important implications for our understanding of the complex regulatory machinery that must exist in vivo and how this system is coordinated during the motility of vesicles within axons.


Asunto(s)
Transporte Axonal/fisiología , Dineínas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Cinesinas/metabolismo , Presenilinas/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Drosophila , Epistasis Genética , Femenino , Genotipo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Actividad Motora/genética , Presenilinas/genética , Transducción de Señal
9.
Hum Mol Genet ; 23(15): 3958-74, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24619359

RESUMEN

The WT1 gene encodes a zinc finger transcription factor important for normal kidney development. WT1 is a suppressor for Wilms tumour development and an oncogene for diverse malignant tumours. We recently established cell lines from primary Wilms tumours with different WT1 mutations. To investigate the function of mutant WT1 proteins, we performed WT1 knockdown experiments in cell lines with a frameshift/extension (p.V432fsX87 = Wilms3) and a stop mutation (p.P362X = Wilms2) of WT1, followed by genome-wide gene expression analysis. We also expressed wild-type and mutant WT1 proteins in human mesenchymal stem cells and established gene expression profiles. A detailed analysis of gene expression data enabled us to classify the WT1 mutations as gain-of-function mutations. The mutant WT1(Wilms2) and WT1(Wilms3) proteins acquired an ability to modulate the expression of a highly significant number of genes from the G2/M phase of the cell cycle, and WT1 knockdown experiments showed that they are required for Wilms tumour cell proliferation. p53 negatively regulates the activity of a large number of these genes that are also part of a core proliferation cluster in diverse human cancers. Our data strongly suggest that mutant WT1 proteins facilitate expression of these cell cycle genes by antagonizing transcriptional repression mediated by p53. We show that mutant WT1 can physically interact with p53. Together the findings show for the first time that mutant WT1 proteins have a gain-of-function and act as oncogenes for Wilms tumour development by regulating Wilms tumour cell proliferation.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mutación , Proteína p53 Supresora de Tumor/genética , Proteínas WT1/genética , Tumor de Wilms/genética , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Anotación de Secuencia Molecular , Cultivo Primario de Células , Mapeo de Interacción de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas WT1/metabolismo , Tumor de Wilms/metabolismo , Tumor de Wilms/patología
10.
Biochem J ; 461(1): 15-32, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24927120

RESUMEN

The WT1 (Wilms' tumour 1) gene encodes a zinc finger transcription factor and RNA-binding protein that direct the development of several organs and tissues. WT1 manifests both tumour suppressor and oncogenic activities, but the reasons behind these opposing functions are still not clear. As a transcriptional regulator, WT1 can either activate or repress numerous target genes resulting in disparate biological effects such as growth, differentiation and apoptosis. The complex nature of WT1 is exemplified by a plethora of isoforms, post-translational modifications and multiple binding partners. How WT1 achieves specificity to regulate a large number of target genes involved in diverse physiological processes is the focus of the present review. We discuss the wealth of the growing molecular information that defines our current understanding of the versatility and utility of WT1 as a master regulator of organ development, a tumour suppressor and an oncogene.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas WT1/fisiología , Animales , Apoptosis/genética , Diferenciación Celular/genética , Genes Supresores de Tumor , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Isoformas de Proteínas/genética , Dedos de Zinc/genética
11.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518961

RESUMEN

Estrogen receptor-positive (ER+) breast cancer is the most frequent breast cancer subtype. Agents targeting the ER signaling pathway have been successful in reducing mortality from breast cancer for decades. However, mechanisms of resistance to these treatments arise, especially in the metastatic setting. Recently, it has been recognized that epigenetic dysregulation is a common feature that facilitates the acquisition of cancer hallmarks across cancer types, including ER+ breast cancer. Alterations in epigenetic regulators and transcription factors (TF) coupled with changes to the chromatin landscape have been found to orchestrate breast oncogenesis, metastasis, and the development of a resistant phenotype. Here, we review recent advances in our understanding of how the epigenome dictates breast cancer tumorigenesis and resistance to targeted therapies and discuss novel therapeutic interventions for overcoming resistance.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Epigénesis Genética , Receptores de Estrógenos , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Animales
12.
Oncogene ; 43(6): 395-405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38066089

RESUMEN

Patients with metastatic acral lentiginous melanoma (ALM) suffer worse outcomes relative to patients with other forms of cutaneous melanoma (CM), and do not benefit as well to approved melanoma therapies. Identification of cyclin-dependent kinase 4 and 6 (CDK4/6) pathway gene alterations in >60% of ALMs has led to clinical trials of the CDK4/6 inhibitor (CDK4i/6i) palbociclib for ALM; however, median progression free survival with CDK4i/6i treatment was only 2.2 months, suggesting existence of resistance mechanisms. Therapy resistance in ALM remains poorly understood; here we report hyperactivation of MAPK signaling and elevated cyclin D1 expression serve as a mechanism of intrinsic early/adaptive CDK4i/6i resistance. ALM cells that have acquired CDK4i/6i resistance following chronic treatment exposure also exhibit hyperactivation of the MAPK pathway. MEK and/or ERK inhibition increases CDK4i/6i efficacy against therapy naïve and CDK4i/6i-resistant AM cells in xenograft and patient-derived xenograft (PDX) models and promotes a defective DNA repair, cell cycle arrested and apoptotic program. Notably, gene alterations poorly correlate with protein expression of cell cycle proteins in ALM or efficacy of CDK4i/6i, urging additional strategies when stratifying patients for CDK4i/6i trial inclusion. Concurrent targeting of the MAPK pathway and CDK4/6 represents a new approach for patients with metastatic ALM to improve outcomes.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Modelos Animales de Enfermedad , Ciclo Celular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
13.
Cell Rep ; 43(5): 114174, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38700982

RESUMEN

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.


Asunto(s)
Neoplasias de la Mama , Cromatina , N-Metiltransferasa de Histona-Lisina , Humanos , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Metilación/efectos de los fármacos , Línea Celular Tumoral , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Receptores de Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
14.
Res Sq ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131684

RESUMEN

Patients with metastatic acral lentiginous melanoma (ALM) suffer worse outcomes relative to patients with other forms of cutaneous melanoma (CM), and do not benefit as well to approved melanoma therapies. Identification of cyclin-dependent kinase 4 and 6 (CDK4/6) pathway gene alterations in > 60% of ALMs has led to clinical trials of the CDK4/6 inhibitor (CDK4i/6i) palbociclib for ALM; however, median progression free survival with CDK4i/6i treatment was only 2.2 months, suggesting existence of resistance mechanisms. Therapy resistance in ALM remains poorly understood; here we report hyperactivation of MAPK signaling and elevated cyclin D1 expression are a unified mechanism of both intrinsic and acquired CDK4i/6i resistance. MEK and/or ERK inhibition increases CDK4i/6i efficacy in a patient-derived xenograft (PDX) model of ALM and promotes a defective DNA repair, cell cycle arrested and apoptotic program. Notably, gene alterations poorly correlate with protein expression of cell cycle proteins in ALM or efficacy of CDK4i/6i, urging additional strategies when stratifying patients for CDK4i/6i trial inclusion. Concurrent targeting of the MAPK pathway and CDK4/6 represents a new approach to improve outcomes for patients with advanced ALM.

15.
Cancer Discov ; 13(6): 1428-1453, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36946782

RESUMEN

We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE: By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neutrófilos , Receptores Tipo II del Factor de Necrosis Tumoral/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Inflamación/genética , Microambiente Tumoral/fisiología , Quimiocina CXCL1/genética , Neoplasias Pancreáticas
16.
Biochem J ; 435(1): 113-25, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21269271

RESUMEN

The Wilms' tumour suppressor WT1 (Wilms' tumour 1) is a transcriptional regulator that plays a central role in organogenesis, and is mutated or aberrantly expressed in several childhood and adult malignancies. We previously identified BASP1 (brain acid-soluble protein 1) as a WT1 cofactor that suppresses the transcriptional activation function of WT1. In the present study we have analysed the dynamic between WT1 and BASP1 in the regulation of gene expression in myelogenous leukaemia K562 cells. Our findings reveal that BASP1 is a significant regulator of WT1 that is recruited to WT1-binding sites and suppresses WT1-mediated transcriptional activation at several WT1 target genes. We find that WT1 and BASP1 can divert the differentiation programme of K562 cells to a non-blood cell type following induction by the phorbol ester PMA. WT1 and BASP1 co-operate to induce the differentiation of K562 cells to a neuronal-like morphology that exhibits extensive arborization, and the expression of several genes involved in neurite outgrowth and synapse formation. Functional analysis revealed the relevance of the transcriptional reprogramming and morphological changes, in that the cells elicited a response to the neurotransmitter ATP. Taken together, the results of the present study reveal that WT1 and BASP1 can divert the lineage potential of an established blood cell line towards a cell with neuronal characteristics.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Proteínas WT1/metabolismo , Reprogramación Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas de la Membrana/genética , Familia de Multigenes/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología , Activación Transcripcional/efectos de los fármacos , Proteínas WT1/genética
17.
Cancer Res ; 82(20): 3668-3670, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36245246

RESUMEN

Invasive lobular carcinomas (ILC) are the second most common histologic subtype of breast cancer, accounting for up to 15% of cases. ILC is estrogen receptor (ER) positive, yet its biology is distinct from invasive ductal carcinomas (IDC), and retrospective analyses have indicated a poorer outcome with endocrine therapy. In this issue of Cancer Research, Nardone and colleagues investigated the mechanisms of this differential therapy response in ILC, which cannot be solely explained by the genetic profile of these tumors. The authors conducted a thorough examination of the epigenome of ILC compared with IDC in clinical and preclinical models and revealed an alternative chromatin accessibility state in ILC driven by the pioneer factor FOXA1. FOXA1 regulates its own expression in a feed-forward mechanism by binding to an ILC-unique FOXA1 enhancer site. This results in a FOXA1-ER axis that promotes the transcription of genes associated with tumor progression and tamoxifen resistance. Targeting the FOXA1 enhancer region blocks this transcriptional program and inhibits ILC proliferation. These results shed light on a new epigenetic mechanism driving ILC tumor progression and treatment resistance, which may have profound therapeutic implications. See related article by Nardone et al., p. 3673.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/tratamiento farmacológico , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Cromatina/genética , Resistencia a Antineoplásicos/genética , Femenino , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Estudios Retrospectivos , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
18.
Front Oncol ; 12: 924808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774123

RESUMEN

The majority of breast cancers are estrogen receptor (ER)+ and agents targeting the ER signaling pathway have markedly increased survival for women with breast cancer for decades. However, therapeutic resistance eventually emerges, especially in the metastatic setting. In the past decade disrupted epigenetic regulatory processes have emerged as major contributors to carcinogenesis in many cancer types. Aberrations in chromatin modifiers and transcription factors have also been recognized as mediators of breast cancer development and therapeutic outcome, and new epigenetic-based therapies in combination with targeted therapies have been proposed. Here we will discuss recent progress in our understanding of the chromatin-based mechanisms of breast tumorigenesis, how these mechanisms affect therapeutic response to standard of care treatment, and discuss new strategies towards therapeutic intervention to overcome resistance.

19.
Cancer Res ; 82(12): 2269-2280, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35442400

RESUMEN

The phosphoinositide 3-kinase (PI3K) pathway regulates proliferation, survival, and metabolism and is frequently activated across human cancers. A comprehensive elucidation of how this signaling pathway controls transcriptional and cotranscriptional processes could provide new insights into the key functions of PI3K signaling in cancer. Here, we undertook a transcriptomic approach to investigate genome-wide gene expression and transcription factor activity changes, as well as splicing and isoform usage dynamics, downstream of PI3K. These analyses uncovered widespread alternatively spliced isoforms linked to proliferation, metabolism, and splicing in PIK3CA-mutant cells, which were reversed by inhibition of PI3Kα. Analysis of paired tumor biopsies from patients with PIK3CA-mutated breast cancer undergoing treatment with PI3Kα inhibitors identified widespread splicing alterations that affect specific isoforms in common with the preclinical models, and these alterations, namely PTK2/FRNK and AFMID isoforms, were validated as functional drivers of cancer cell growth or migration. Mechanistically, isoform-specific splicing factors mediated PI3K-dependent RNA splicing. Treatment with splicing inhibitors rendered breast cancer cells more sensitive to the PI3Kα inhibitor alpelisib, resulting in greater growth inhibition than alpelisib alone. This study provides the first comprehensive analysis of widespread splicing alterations driven by oncogenic PI3K in breast cancer. The atlas of PI3K-mediated splicing programs establishes a key role for the PI3K pathway in regulating splicing, opening new avenues for exploiting PI3K signaling as a therapeutic vulnerability in breast cancer. SIGNIFICANCE: Transcriptomic analysis reveals a key role for the PI3K pathway in regulating RNA splicing, uncovering new mechanisms by which PI3K regulates proliferation and metabolism in breast cancer. See related commentary by Claridge and Hopkins, p. 2216.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Neoplasias de la Mama/patología , Carcinogénesis/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Humanos , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Empalme del ARN/genética , Transcriptoma
20.
Mol Cell Oncol ; 8(3): 1891831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34027035

RESUMEN

Forkhead box protein A1 (FOXA1) is a pioneer transcription factor that contributes to chromatin opening to allow binding of estrogen receptor (ER) in ER+ breast cancer. Mutations in FOXA1 are recurrent in breast cancer but the functional consequences of these mutations remain unknown. We identified that FOXA1 mutations are associated with worse outcomes to endocrine therapy by inducing alternative chromatin profiles and gene activity in breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA