Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Anat Pathol ; 27(4): 241-250, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32541594

RESUMEN

Pathologists are adopting whole slide images (WSIs) for diagnosis, thanks to recent FDA approval of WSI systems as class II medical devices. In response to new market forces and recent technology advances outside of pathology, a new field of computational pathology has emerged that applies artificial intelligence (AI) and machine learning algorithms to WSIs. Computational pathology has great potential for augmenting pathologists' accuracy and efficiency, but there are important concerns regarding trust of AI due to the opaque, black-box nature of most AI algorithms. In addition, there is a lack of consensus on how pathologists should incorporate computational pathology systems into their workflow. To address these concerns, building computational pathology systems with explainable AI (xAI) mechanisms is a powerful and transparent alternative to black-box AI models. xAI can reveal underlying causes for its decisions; this is intended to promote safety and reliability of AI for critical tasks such as pathology diagnosis. This article outlines xAI enabled applications in anatomic pathology workflow that improves efficiency and accuracy of the practice. In addition, we describe HistoMapr-Breast, an initial xAI enabled software application for breast core biopsies. HistoMapr-Breast automatically previews breast core WSIs and recognizes the regions of interest to rapidly present the key diagnostic areas in an interactive and explainable manner. We anticipate xAI will ultimately serve pathologists as an interactive computational guide for computer-assisted primary diagnosis.


Asunto(s)
Inteligencia Artificial/normas , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Patología/métodos , Patología/normas , Humanos
2.
Pattern Recognit ; 51: 453-462, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26858466

RESUMEN

We present a new approach to facilitate the application of the optimal transport metric to pattern recognition on image databases. The method is based on a linearized version of the optimal transport metric, which provides a linear embedding for the images. Hence, it enables shape and appearance modeling using linear geometric analysis techniques in the embedded space. In contrast to previous work, we use Monge's formulation of the optimal transport problem, which allows for reasonably fast computation of the linearized optimal transport embedding for large images. We demonstrate the application of the method to recover and visualize meaningful variations in a supervised-learning setting on several image datasets, including chromatin distribution in the nuclei of cells, galaxy morphologies, facial expressions, and bird species identification. We show that the new approach allows for high-resolution construction of modes of variations and discrimination and can enhance classification accuracy in a variety of image discrimination problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA