Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(5): 1489-1494, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635422

RESUMEN

Coordinated dynamics of individual components in active matter are an essential aspect of life on all scales. Establishing a comprehensive, causal connection between intracellular, intercellular, and macroscopic behaviors has remained a major challenge due to limitations in data acquisition and analysis techniques suitable for multiscale dynamics. Here, we combine a high-throughput adaptive microscopy approach with machine learning, to identify key biological and physical mechanisms that determine distinct microscopic and macroscopic collective behavior phases which develop as Bacillus subtilis swarms expand over five orders of magnitude in space. Our experiments, continuum modeling, and particle-based simulations reveal that macroscopic swarm expansion is primarily driven by cellular growth kinetics, whereas the microscopic swarming motility phases are dominated by physical cell-cell interactions. These results provide a unified understanding of bacterial multiscale behavioral complexity in swarms.


Asunto(s)
Bacillus subtilis/fisiología , Movimiento/fisiología , Comunicación Celular/fisiología , Proliferación Celular/fisiología , Cinética , Aprendizaje Automático
2.
Chaos ; 29(6): 063101, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31266320

RESUMEN

We present an adaptive control scheme that realizes desired dynamics of an oscillator network with a given number of communities by adjusting the coupling weights between oscillators accordingly. The scheme allows, for example, to simultaneously establish different pregiven synchronization levels in the particular communities as well as phase relationships between them. We apply the method in numerical simulations with all-to-all and randomly coupled networks. Moreover, we provide an experimental proof of concept validating our numerical findings in a network of optically coupled photosensitive chemical micro-oscillators.

3.
Sci Rep ; 10(1): 7821, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385296

RESUMEN

Photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and simulations. Generally good agreement between the experimental and simulated dynamical behavior is found, with spiral wave chimeras exhibited at small values of the time delay in the coupling between the oscillators, spiral wave core splitting at higher values, and phase cluster states replacing the spiral wave dynamics at the highest values of the time delay. Spiral wave chimera dynamics is exhibited experimentally for much of the time delay range, while spiral wave phase cluster states are exhibited more in the model simulations. In addition to comparing the experimental and simulation behavior, we explore the novel spiral wave phase cluster states and develop a mechanism for this new and unusual dynamical behavior.

4.
Sci Adv ; 6(39)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32967828

RESUMEN

Onset and loss of synchronization in coupled oscillators are of fundamental importance in understanding emergent behavior in natural and man-made systems, which range from neural networks to power grids. We report on experiments with hundreds of strongly coupled photochemical relaxation oscillators that exhibit a discontinuous synchronization transition with hysteresis, as opposed to the paradigmatic continuous transition expected from the widely used weak coupling theory. The resulting first-order transition is robust with respect to changes in network connectivity and natural frequency distribution. This allows us to identify the relaxation character of the oscillators as the essential parameter that determines the nature of the synchronization transition. We further support this hypothesis by revealing the mechanism of the transition, which cannot be accounted for by standard phase reduction techniques.

5.
Phys Rev E ; 93(2): 022203, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986327

RESUMEN

Dissipative patterns in excitable reaction-diffusion systems can be strongly affected by spatial heterogeneities. Using the photosensitive Belousov-Zhabotinsky reaction, we show a hysteresis effect in the transition between free and pinned spiral rotation. The latter state involves the rotation around a disk-shaped obstacle with an impermeable and inert boundary. The transition is controlled by changes in light intensity. For permeable heterogeneities of higher excitability, we observe spiral drift along both linear and circular boundaries. Our results confirm recent theoretical predictions and, in the case of spiral drift, are further reproduced by numerical simulations with a modified Oregonator model. Additional simulations with a cardiac model show that orbital motion can also exist in anisotropic and three-dimensional systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA